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NOTATION

constant as defined in equations (2.2.4-1) or
(3.1-3) or (L.4-1)

curvature parameter

constant as defined in equations (2.2.4-1) or
(3.1-2) or (k4.4-2)

functions as defined in equation (4.5-10)

functions as defined in equation (L4.5-8)

skin friction at the wall

mean value of hot-wire signal
mean square value of hot-wire signal

zero flow voltage of hot-wire signal

non-dimensional velocity defect

shape factor

linearizer calibration constant
non-dimensional curvature of surface

curvature.of surface

Prandtl's mixing length or characteristic length

length scale as defined by Mellor and Herring (1970)
and in equation (E-T)

vi



English Letters

m constant as defined in equation (2.2.Lk-1) or an
integer in equation (4.4-2)

n an integer in equation (4.4-1)

P mean pressure

P fluctuating pressure

Q magnitude of mean flow velocity

q velocity vector

q? (;E;;§+;E) turbulence energy

Re Reynolds number

R(x) radius of curvature of surface

Ro radius of curvature of surface at entrance to

curved section

T radius of curvature

s arc length

‘I‘ij viscous stress tensor

U mean flow velocity in x-direction
Up potential velocity

Upw potential velocity at the wall

u fluctuating velocity in x~-direction
ut characteristic velocity inside boundary layer
u2T= ;¥ friction velocity

ut root mean square of u

Vv mean flow velocity in y-direction
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English letters

v

vl

w!

<y

Greek ILetters

B
y
U,.-U
A= [ 22— ay
o U
T
Ay
8
* U
5 = [ (1- =)dy
o U
P
UO
~_ 1 v
€—'2U
€ (o)

fluctuating velocity in y-direction
root mean square of v

fluctuating elocity in z-direction
root mean quare of w
non-dimensional x-coordinate
x-coordinate

non-dimensional y-coordinate in Quter or Inviscid
Region

y-coordinate or non-dimensional y-coordinate in
Middle or Defect Region

nen-dimensional y-coordinate in Inner or Viscous
Region

z-coordinate

angle between mean flow velocity and x-coordinate
as defined in Figure 18

angle of inclination of slanted hot-wire; 45°

characteristic boundary layer length scale

length scale in Middle or Defect Region

boundary laycr thickness or angle of rotation as
defined in Figure 18

displacement thickness

smll parameter as defined by Mellor (1970)

small paramcter as defined by Mellor (1970)
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Creek Letters

£ vorticity in z-direction

n = 3& non-dimensional y-coordinate
B

o = fz %L (1- lL)dy momentum thickness

U
P Y
2] angle of inclination of slanted probe; LE°
K von Karman constant
A length scale as defined by Mellor and Herring (1970)
and in equation (E-6)
v molecular viscosity
ve eddy viscosity
v corresponding flat plate eddy viscosity
°F
p density
T shear stress
Tij fluctuating viscous stress tensor
¢ angle between normal to sensor and direction of
mean flow

v
¢ = = % eddy viscosity function

U0

w

£.q
1

°z1‘X) =
¢A(X) = %% wall function as defined by Mellor and Herring (1970)
x = L2

v
Subscripts
1 free stream condition
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Subscripts

F corresponding flat plate gquantities
i inner wall or indicated value

L linearizer output

o outer wall

) potential quantities

v potential quantities at the wall
T reference state

s static quantities

sW static quantities at the wall

t total quantities

w wall quantities



Chapter I
GENERAL CONSIDERATIONS

1.1 Introduction

In both external and internal aerodynamics, most of the problems
involve boundary layer flows over curved surfaces. Some of these flows
are fully developed, while others are not. 1In the past, investigators
have been content to treat these boundary layer flows by assuming
that the curvature of the mean flow streamlines in planes normal to
the surface, and the associated static pressure variation across the
boundary layers do not influence the flow significantly, if the radius
of curvature of the surface is much larger than the boundary layer
thickness. With such simplification, the many problems in viscous
aerodynamics can be solved by making use of the vast amount of data
collected in the study of fully developed pipe/channel flows and two-
dimensional boundary layers. This assumption is known to be correct
approximately in laminar flow, since the effects of the additional
curvature of the mean flow streamlines are known to be of second order
smallness (see van Dyke 1962). These small effects arise from the
kinematics of curved flow, and the curvature of mean flow streamlines
has little influence on the magnitude and distribution of the viscous
stresses.

On the other hand, turbulent flows are very sensitive to the
curvature of the mean flow streamlines. The additional curvature
influences the flow in a manner which is not known at present, but
is believed to be significant enough to change the detail flow mechanism
completely. This is evident from an examination in some detail of the
observed phenomena in a turbulent boundary layer on a flat surface.

Very close to the wall, there appears to be a region where the
fluid motion is still predominantly viscous, and the velocity rises

steeply. Further away, the flow becomes unstable, and finally, a



reglon is reached where the entire flow is involved in turbulent motion.
Recent detailed experimental studies by Schraub and Kline (1965)

have revealed that the viscous region is not truly undisturbed.

Rather, relatively large elements of low velocity fluids adjacent to

the surface of the viscous sublayer periodically 1lift off the surface
and move towards the fully turbulent region. There they join a pattern
of decaying turbulence. The mechanism responsible for this phenonfenon
is not fully understood. However, it can be attributed to the insta-
bility of the flow near the outer edge of the viscous sublayer, and also
due to the action of the outer flow which operates mainly by pressure
fluctuations transmitted to the sublayer. Since continuity dictates
that fluid must replace the elements which 1ift off the surface, elements
of highly energetic fluid will have to move in from further out. 1In
turn, these highly energetic fluid may supply the energy to eject the
elements from the surface. At any rate, turbulence in the fully
turbulent region is generated and maintained by the elements originating
at the surface.

With this picture in mind, one can see why turbulent flows are
very sensitive to curvature of the mean flow streamlines. For flows
over convex surfaces, the centrifugal force on a fluid particle must
be balanced by an inward pressure gradient. If a particle is moving too
slowly, its centrifugal force is too small, and it moves inwards.

As a result, the fluid elements, which 1ift off from the surface carrying
with them the velocities at the points where they come from,will have

e smaller centrifugal force at their new locations. Therefore, they
will be pushed inwards by the pressure gradient and the interchange of
momentum and energy between the faster and the more slowly moving

fluids are hindered. As a result, the boundary layer is thinner at

the wall. Observations of flows between rotating cylinders by Taylor
(1936) confirmed this and showed a very large reduction in turbulent

shear stress. 1In contrast with this, the destablizing effect of



centrifugal forces on concave walls leads to the formation of Taylor-
Gortler type vortices which promote transition to turbulence. Therefore,
it is quite possible that turbulent boundary layers on curved surfaces
may differ appreciably from that on a flat plate with the same distri-
bution of external pressure.

Before proceeding any further, it is felt that a discussion of
previous work is most essential in that it not only points the way
for further work in curved turbulent flows, but that it also indicates
the logical line of attack for the present investigation. For purpose
of clarity, the discussion is divided into two sections. The first
section deals mainly with fully developed flows, while the second touches’
on turbulent boundary layers along curved surfaces. In antlcipation of
the fact that the flow phenomenon in turbulent boundary layers along
concave surfaces are different from that along convex surfaces, distinc-
tion will be made between these two types of flow in the discussion

below.

1.2 A Brief Discussion of Previous Work

1.2.1 Fully Developed Curved Turbulent Flows

Since the flow near a surface is determined to a large extent by
local conditions end to a lesser extent by the action of the cuter flow
which operates mainly through pressure fluctuation transmitted to the
region near the surface, one can expect the flow in the vicinity of the
wall to be the same, be it a boundary layer flow or a fully developed -
flow. This is true for straight flows and data obtained from pipe
flow measurements lead to the establishment of the law of the Wall.
With only the additional effects of the curvature of the mean flow
streamlines which are known to be of second order smallness only if the
flow is viscosity dominant, one would expect the curvature to have very

little effect on the flow close to the wall®. As a result, one can expect

*This fact is at least partially supported by the vast amount of flat plate
pressure gradient data in which the mean flow streamlines are also curved
due to rapid boundary layer growth.
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the Law of the Wall to hold also in a curved flow. However, the
measurements of Wattendorf (1935) in two curved channels of constant
curvature and a ratio « of half channel width to mean radius of
curvature of 1/19 and 1/9 do not lend evidence to such an argument.
Rather, Wattendorf found that the deviation from the Iaw of the Wall was
in opposite directions for opposite signs of curvature, and that the
deviation increased with curvature.

Eskinazi and Yeh (1956) did similar measurements in a curved
channel of constant curvature and with g = 1/19 . They found that the
deviation from the Law of the Wall does not start until about Y t/y ~ 200.
Indeed, the deviation was in opposite directions for opposite signs of
curvature. This did seem to indicate the existence of the Iaw of the Wall
region. From their data, Eskinazi and Yeh concluded that U/uT is not
only a function of yuT/V , but also of y/r or some combination of the
two.

For fully developed turbulent flow in a curved channel of constant
curvature, the turbulent shearing stress would, in the momentum transfer
theory, be given by

- W =y, (22 ()
where v is the eddy viscosity. This requires the shearing stress to
vanish at g%ﬂur) = 0 . However, both Wattendorf and Eskinazi and Yeh
found that the point of zero uv did not coincide with the point of
zero é%(ur) . Hence, Eskinazi and Yeh concluded that th;re was a
region between these two points in which the product uv 5;(ur) was__
positive. This meant that in this region, the turbulent energy in u2
was being suppressed by Reynolds stress working on the mean momentum
gradient.

Besides mean flow measurements Eskinazi and Yeh also made detailed

turbulence measurements and found that the turbulence intensities were



greater on the outer (concave) wall and smaller on the inner ( convex)
wall compared to corresponding points in a straight channel. 1In an
inviscid, irrotational curved flow, the radial equilibrium of a fluid
element is stable if the radial gradient of angular momentum is negative.
Eskinazi and Yeh were the first to show that these considerations also

apply to curved turbulent flows.

1.2.2 Turbulent Boundary layers on Curved Surfaces

The effect of curvature on turbulent boundary layer was first
investigated by Wilcken (1930) on both the convex and concave surfaces.
It was then followed by Schmidbauer (1936) who studied the flow over
convex surfaces only. In both these experiments, 6/R was at most .025 .
From his measurements, Wilcken concluded that the eddy viscosity was
much greater for the flow near the outer (concave) wall than that near
the inner (convex) wall, and that the mixing length at the outer wall
was found to be considerably larger than for a flat surface. Although
no turbulence measurements were made, these results seem to lend evidence
to the fact that with concave surface, the turbulence is strongly increased
while with convex walls, it is reduced. Wilcken explained this by arguing
that the centrifugal forces at the outer wall promote, while it diminishes
near the inner wall, the turbulent exchange between adjacent fluid layers.
Hence, the rapid thickening of the boundary layer on the outer wall is
due also to the increased turbulence activity. The opposite 1is true on
the convex wall. In connection with this, Schmidbauer's data also
showed a decrease in the boundary layer thickness. However, Wilcken's
results were somewhat obscured by disturbing side influences, which
were mainly caused by pressure conditions at the beginning and end of
the channel. In addition, the disturbing effect of the secondary flow
may also have influenced the boundary layer development on both the inner
and outer walls of the channel.

The work of Schneider and Wade (1967) did nothing to eliminate the



secondary flow influences. In fact, it is quite a bit more pronounced
because the aspect ratio of the test section varies from 1 at the
entrance to 2 at the exit. Also, the flow in the test section was one
of constant acceleration. As a result, it was little wonder why their
data do not correlate well with the Law of the Wall.

Through detailed measurements in a 180° bend, Patel (1968b)
demonstrated that the boundary layer on the convex wall was relatively
two-dimensional near the center line for the first 80° of the bend.

Thus, he managed to establish that the boundary layer development on

the convex wall near the center line of an 80° curved duct was relatively
free from the influence of secondary flow. In contrast to previous work,
the boundary layer investigated by Patel (1968a) has a maximum value of
B/R'v 0.1 . However, Patel did nothing to change the pressure distri-
bution on the convex wall of the curved duct, and in the opinion of the
present author, his data is subjected to the same shortcomings as that

of Wilcken in that it is hard to separate the curvature effects from

the pressure gradient effects.

The flow between two concentric ecylinders with the inner one in
motion while the outer one remains at rest affords a good example of
the unstable stratification causes by the additional centrifugal forces
acting on the fluid particles. Since the velocity is higher near the
inner cylinder, the fluid particles experience a higher centrifugal
force. and as a result, the fluid particles will have a tendency to
move outward. Taylor (1938) was the first to observe that when a certain
Reynolds number is exceeded, longitudinal vortices with axes located
along the circumference begins to appear. A similar vortex system was
being observed by Gortler (1940) for flows along concave walls. The
analogy can also be drawn between the flow along a concavely curved
surface and that along a heated horizontal plate. Gortler (1959)
showed that the bouyant force in the thermally stratified layer also

gilves rise to a system of longitudinal vortices. Noting that the
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mechanism responsible for the existence of the longitudinal vortex system
is the same for these three different flows, one will naturally ask
whether such a system would also exist in a fully turbulent flow along

a concave surface, and if so, would the system of vortex be stationary.
In addition, one would like to find out the effect of such a vortex
system on the development of the boundary layer along the concavely
curved surface.

Tani (1962) was the first to demonstrate the existence of the
longitudinal vortices in the turbulent boundary layer along a concave
wall. According to Tani, the resultant wave amplitude of the vortices
decreased as the radius of curvature of the surface was increased. More
recently, Patel (1968b) found that the longitudinal vortices also
appeared on the concave wall of his 180 channel, and suggested that
before studying the influence of concave curvature on a two-dimensional
turbulent boundary layer, one should examine these vortices in detail
so as to determine the curvature parameter that would govern the appearance

and strength of these vortices.

1.3 Present Objectives

A great many mathematical models of physical phenomena are very
complicated and are highly nonlinear in nature. With the present
knowledge of nonlinear equations, most of these models cannot be
solved in full. Usually, simplifying assumptions are necessary to
reduce these equations to a more manageable form. 1In soO doing, the
researcher is faced with the difficulty of deciding which effects or
variables are more important. Experimental studies are designed to
provide such information. Not only will the experimental results
reveal the most significant features of a physical phenomenon (provided
the experimental work is designed and carried out properly), they will
also provide empirical correlations for the theoretical researcher,

thus, enabling the researcher to make further simplifications of the



mathematical model and eventually obtain a solution to the particular
problem.

In connection with this, Coles (1962) has pointed out that the
most useful data are those in which one physical effect or parameter is
varied at a time. Well designed experiments should be able to separate
the various physical effects and isclate them for investigation, thus
allowing the researcher to comprehend the significance of these wvarious
effects easily. Fully developed turbulent flows in pipes and channels
and flat plate turbulent boundary layer with the pressure gradient
carefully controlled, have led Clauser (1954, 1956) to the formulation
of the concept of the equilibrium boundary layer.

In keeping with the idea that one variable should be varied at
8 time, the present experiments are so designed that curvature alone is
isolated for investigation. Due to the presence of the pressure gradient
across the boundary layer in flows along curved walls, it is hard to
avoid the streamwise pressure gradlent in the flow along a flat surface
Joining smoothly to a curved surface. However, the pressure change in
the streamwise direction should be minimized, so that the flow can
recover from the pressure effect in a relatively short distance. Means
of doing this are incorporated in the boundary layer tunnel that is
specially designed for the present investigation. (This will be discussed
further in Chapter II.) Provisions are also made for the variation of
streamwise pressure distribution along the curwved wall, so that both
constant pressure and pressure gradient data can be obtained. Because
of the need to be able to establish constant pressure on both convex
and concave surfaces, it is apparent that a single test section cannot
provide such versatility. Therefore, separate test sections, one with
convex curvature and one with concave curvature, are required. Again,
provisions are made In the tunnel so that the test section can be
changed without too much trouble. No attempt has been made to obtain

date for several values of the curvature parameter, instead it has



been decided to study the flow phenomenon in more detail in addition to
the usual velocity profile measurements.

Thus, the objective of the present investigation is to provide
both empirical knowledge and physical understanding in the following
areas. These areas are: (a) constant pressure flow along convex surface,
(v) separating flow along convex surface, and (c) constant pressure flow
along concave surface. 1In case (a), the curvature parameter is kept
constant, but is varied along the flow in case (b). For both cases (a)
and (b), velocity profiles were obtained from pitot measurements across
the boundary layers while a rotating wire technique proposed by Fujita
and Kovasznay (1968) was used to measure the various components of the
Reynolds stress tensor.

In view of the fact that the flow along a concave surface is
different from that along a convex surface, the system of longitudinal
vortices that exists was mapped out first using fixed hot-wires. Then,
the rotating-wire technique was used to measure the various components
of the Reynolds stress tensor at both the positions of the crest and
trough of the wave system.

Following a discussion of the various test equipment and their
qualification in Chapter II, the results are examined and critically
analyzed in Chapter III, and the Law of the Wall is established for
flows along convex surfaces. In Chapter IV, a self-consistent set of
equations for curved turbulent boundary layer flows is derived, together
with an eddy viscosity which is modified to include curvature effects.
The predictions by this model are then compared with the experimental
results. Chapter V summarizes all the results and recommendations for

future work are also given.



Chapter II
EXPERIMENTAI, PROGRAM

2.1 Curved Wall Tunnel

2,1.1 Description of Tunnel

The construction of the curved wall tunnel used in the present
investigation 1s described in detail in Appendix A. The diagrammatic
layout of the tunnel is shown in Figure 1 and a picture of the curved
wvall tunnel is given in Figure 2. Briefly, the wind tunnel is of the
open-return suction type and is powered by a two speed, 10 H.P. fan.
The Reynolds numbers per unit length corresponding to these two speeds

2 and 7.56 x 105 respectively. The wind tunnel is less

are 4.37 x 10
quiet and the vibration due to the fan is more severe at the higher
speed. As a result, all runs on both the convex and concave test walls
were conducted at the lower Reynolds numbers. Originally the entry to
the tunnel was made up of three layers of honey-comb flow straightener
separated by screens. Hovwever, 1t was found that the unit cannot provide
sufficient straightening effect to prevent unsteadiness in the flow.
Later, through observation of tufts, the unsteadiness was shown to be
due to the unsteady ingestion of vortices which formed on the floor of
the room. To remedy the situation, two more layers of honey-comb
straightener separated by screen together with a bell-mouth were added
to the entrance of the tunnel. The traversing of tufts behind the
last screen then showed that the entire unit has sufficient straightening
effect to prevent unsteadiness in the flow, and that the flow is quite
parallel.

A contraction section that has a contraction ratio of 6 to 1 is
installed behind the flow straightener. The straight section that
follows is L4 feet long and has a cross-section of 6 inches by 48 inches.

The remainder of the tunnel consists of the curved test section which

has a fixed test wall of varying curvature and an adjustable opposite
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wall, the exit diffuser and the fan and motor housing. The adjustable
wall allows the pressure distribution on the curved test wall to be
adjusted to give any arbitrary pressure distribution.

Two curved test sections were made; one has a convex test wall,
whilc the other lms a concave test wall. The whole tunnel was so constructed
that the test section could be connected to and disconnected from the straight
section and the exit diffuser with relative ease. In order to accommodate
the adjustable wall in the curved test section, the exit diffuser was
constructed in such a manner that one movable wall was all that was
required to fit the test section with either the convex or concave test
walls. End wall jets were installed at the entrance to the curved
test section to limit the secondary flow in the test section to small
regions near the end walls. 1In addition, it was found necessary to have
a side wall jet installed on the wall opposite the convex test wall.
However, with a concave test wall, the side wall jet was found unnecessary.
Further discussions of the significance of the side wall jet and the end
wall jets will be given in Sections 2.3.2 and 2.3.3 respectively.

Wall static pressure taps made of .032 inches 0.D. stainless
tubing were installed in the walls of the tunnel. For the straight
section where the wall is 9/16 inches thick, the tubings werec cementcd
into slots milled into the walls of the tunnel. The extruded tubings
were then sanded flush with the surface. TFor the curved test section
where the walls are only 1/32 inches thick, it was found necessary to
solder a square metal plate to the tubings. The tubings were then
installed into holes drilled into the wall, and then secured in place
by soldering the plate onto the wall. Again, the tubings were sanded
flush with the surfacc. Thus, the resultant pressure taps were of the

sharp edged, deep hole type.

2.1.2 Geometry of Curved Test Walls

In designing the curved wall, an original objective was to achieve

11



an equilibrium constant pressure profile characterized, however, by a
constant value of the curvature parameter, 5*/R « Using simple flat
plate turbulent boundary layer theory, an estimate of 6*(x) is

obtained by assuming

.03Tx

I{exl;5

5%(x) = (2.1.2-1)

The empirical relation provides values of R(x) if the curvature
parameter is maintained constant. For the convex wall, the constant

is taken to be .01, while for the concave wall, the constant is assumed
to be .007. The results are displayed in Figures 3 and L4 for the curved

walls respectively.

2.2 Measurement Techniques and Instrumentations

2.2.1 Wall Static Pressure

A row of wall static pressure taps is provided on the tunnel
center line in both the straight test wall and the curved test wall.
In addition, two rows of pressure taps, 14 inches above and below the
tunnel center line, are provided on the curved test walls. With the
convex test wall, the pressure taps are spaced as follows. The first
pressure tap in the tunnel center line is situated at x = 4 inches
(see Figure 5), then every 10 inches until x = L4 inches, then every
inch until x = 58 inches, then every 2 inches until x = 78 inches where
the last pressure tap is situated. The off center line pressure taps
are situated at x = 51, 57, 62, 68, T2 and T6 inches respectively.
With the concave test wall, the pressure taps in the tunnel center line
start at x = 6 inches (see Figure 6), then every 10 inches until x = 46
inches, then every 4 inches until x = 5k inches, then every inch until
x = 70 inches, then every 2 inches until x = 110 inches where the last
pressure tap is situated. The off center line pressure taps start at

X = U6 inches and are spaced at 4 inches apart until x = 110 inches.
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The pressure taps along the tunnel center line are used for the measure-
ment of the potential velocity at the surface while the off center line
pressure taps are used only for checking the pressure variation in the
transverse direction. They also serve to indicate the influence of the
secondary flow (see Section 2.3.3).

The wall static pressure taps are connected to the negative port
of a Pace Model CP510-.1 PSID pressure transducer. The positive port
of the pressure transducer is connected to a reference pressure which
is provided by a pitot tube situated in the free stream near the tunnel
entrance. The transducer output is connected to a DISA Model 55 D30
Digital DC Voltmeter which can be read to .001 volts. The transducer
has a maximum output of 5 volts and this corresponds to a pressure of
3.51 inches of alcohol (sp. gr. = 0.791). Static calibration of the
pressure transducer is carried out against a micro-manometer for the
pressure range O - 1 inch of alcohol, and against a manometer which
reads to within .02 inch of alcohol for the pressure range of 1 - b
inches of alcohol. The calibration was checked from time to time and

it was found that the calibration curve was quite repeatable.

2.2.2 Yaw Measurements

In the wall regions the centrifugal acceleration of the low velocity
end-wall boundary layer flows cannot balance the pressure gradient
impressed by the main stream. The resultant end-wall cross flows or
secondary flows influence the flow near the tunnel center line and it
may no longer be two-dimensional. Theoretically, if the aspect ratio
of the channel is large enough, the secondary flow will be canfined to
a small region near the end walls, and the flow in the core will be
essentially two-dimensional. The present tunnel has an aspect ratio of
8 in the straight section and varies to a minimum of 6.2 in the curved
test section with the convex test wall (see Figure 3). In order to find

out the extent of the secondary flow, yaw measurements inside the boundary



layers were made at the tunnel center line and at planes above and
below the tunnel center line.

For the case of constant pressure flow along convex wall y yaw
measurements were made at Stations 3, 4, 5, 10, 11 and 12. For the
case of separating flow along convex wall , yaw measurements were made
at Stations 3, 4, 5, 8, 9 and 10. The various locations of these
stations are shown in Figure 5. For the case of constant pressure
flow along concave wall , yaw measurements were made on the convex wall
opposite the concave test wall. These measurements were made at x = TO
inches and x = 96 inches and at planes 16 inches above and below tunnel
center line. The locations of these stations are shown in Figure 6.

A Conrad probe (used as a null direction probe) is used to measure
flow directions inside the boundary layer. The particular probe geometry
(see Figure T7) is chosen because of its high sensitivity and its zero
scale effect (see Bryer, et.al. 1958). The probe has a stem of 1/8
inches 0.D. stainless steel tube and a goose-neck (Figure 8) of .063
inches 0.D. stainless steel tube. With this shape, the edge of the
probe is in line with the axis of the probe. Therefore, by aligning
the axis of the probe with the radial lines at the point of measurement,
the traverse across the boundary layer will be perpendicular to the
surface. The Conrad probe is inserted into the rotary device (Figure 9)
which in turn is secured onto the probe carrier. The probe carrier is
slid into a vertical stand and secured tightly in the level where the
probe is to be introduced into the test section. The bottom of the
stand is clamped to the floor of the tunnel and the top of the stand
is also clamped to one of the ribs on the tunnel wall (see Figure 10).
The probe is then introduced into the test section.

The introduction is through holes 7/16 inches diameter on the wall
opposite the test wall. A plexiglass plug is machined to fit into the
hole and flush with the wall. A hole just large enocugh to allow the

probe to pass through is drilled onto the plug. The plug-probe assembly
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is then taped onto the wall. When this probe is securely in place, it
is traversed towards the test wall. An electrical circuit is arranged
so that when the probe is touching the curved wall, a light goes on.
When the probe is brought back to such a position that the light just
goes off, the reading on the vernier mounted on the probe carrier is
noted. This gives the zero reading for y . This way of positioning
the probe has an accuracy in y of + .00l inches

The probe is rotated until the pressure is the same in the two
openings. The pressure difference between the two openings is measured
by a Pace Model CP51D-.1 PSID pressure transducer which is connected to
a DISA 55D30 Digital Voltmeter, and is indicated by a zero reading on
the voltmeter. However, due to pressure fluctuations, the voltmeter
can be at best read to + .01 volts. The angle through which the probe
has been rotated can be read from the dial on the rotary probe carrier
(Figure 9). Depending on the mean flow velocity, this corresponds to
an accuracy of + 0.5 in the determination of the flow direction. The
sensitivity of the Conrad probe was determined for two different mean
flow velocities in the fully developed pipe flow system and the result
is given in Figure 8. Also, the null angle of the Conrad probe was
determined in the pipe flow system. A more detailed explanation of the
positioning of the probe, the accuracy of the yaw measurements, and the

determination of the null angle is given in Appendix B.

2.2.3 Velocity Profiles

In most boundary layer measurements, the mean velocity is measured
with a small pitot-static tube which is traversed in the direction per-
pendicular to the wall. The basis for these measurements is the incom-

pressible, frictionless Bernoulli equation

The mean velocity thus measured depends on how accurate the pitot-static
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tube measures the static pressure. The presence of this probe causes
the streamlines to diverge as the leading edge of the probe is approached.
This changes the curvature of the streamllines and as a result the local
static pressure. The effect of the leading edge is felt many probe
diameters downstream as the streamlines return to parallelism with those
of the main flow. On the other hand, the disturbances created by the
stem propagate upstream and produce a local variation from true static
pressure. However, the two effects cause opposite changes in the stream
pressure, and therefore a position can be found in the probe to locate
the static pressure holes such that the effects of leading edge and stem
cancel each other and again the true static pressure 1s measured.
Pitot-static probes of such design are commonly used in boundary layer
measurements on flat surfaces where the probe is essentially parallel

to the surface. For boundary layer flows along curved surfaces, the
probe will no longer be parallel to the surface. As a result, the mean
flow approaching the probe is at an angle of attack, and the probe

will no longer register the true static pressure. In view of this,

the conventional pitot-static probe was not used for velocity profile
measurements. Rather, a total head probe was used to measure the local
stagnation pressure, and the velocity was calculated from the incompressible
frictionless Bernoulli equation together with the y momentum equation
(see Section 2.4.1).

The stem of the total head probe is made from 1/8 inches 0.D.
stainless steel tube while the goose-neck is formed from .032 inches 0.D.
stainless steel tube flattened at the tip to an outside vertical dimension
of .008 inches with an opening vertically of .00k inches (Figure 8).
Rogers and Berry (1950) found that the response of such a flat nose
probe was quite independent of yaw angle of 15 degrees and less. The
accuracy of the present probe was checked against a standard pitot-static
probe ina fully developed turbulent pipe flow system. The wall static

pressure at the point of measurement was used as the reference for the
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total-head probe. Assuming the static pressure to be constant across
the pipe the probe gives the dynamic head directly. The measurements
obtained using the pitot-static probe and the present probe were jdentical.

For the convex test section, velocity profile measurements were
made at a total of twelve stations situated on both the straight and
curved sections. Of the twelve stations, eight were situated along the
tunnel center line, two were situated at a plane 14 inches above tunnel
center line and the other two were situated at a plane 1L inches below
tunnel center line. The locations of the center line stations together
with the locations of the off center line stations are shown in Figure 5.
For the case of constant pressure flow, the off center line stations
were located directly above and below Stations 4 and 11, while for the
separating flow case, they were located directly above and below Stations
4 and 9. This was because the flow was near separation at Station 11 for
the separating flow case.

The positions of the various stations were measured from the entrance
to the straight section. Since the constant pressure flow experiment
was run first, the locations of the various stations on the test (inner)
wall were selected and radial lines were merked on both the top and
bottom walls of the tunnel at these locations. The adjustable (outer)
wall was then installed and the correct pressure distribution was set
up on the test wall (see Section 2.3.2). The intersection between the
radial lines and the outer wall would then give the locations of the
corresponding measuring stations on the outer wall. The total-head
probe is introduced into the tunnel from the outer wall and is secured
in place in much the same way as that used to secure the Conrad probe.
The probe is carried by the probe carrier shown in Figure 10, and is
positioned radially much the same way as that used to position the
Conrad probe. The probe carrier is mounted in the same manner (see
Figure 10). Again, the same electrical circuit is used to indicate
whether the probe is Jjust touching the wall. Since the surface of the
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straight section was made of white panelite, it does not provide
electrical connection. To remedy this, a thin coat of silver paint

was painted on the tunnel center line of both side walls of the straight
section.

The same outer wall was used for the separating flow experiment,
but it was adjusted to give the correct pressure distribution on the
test wall. Therefore, if the same holes were to be used to introduce
the probe, their corresponding positions on the test wall will be
different. The locations of these stations are also shown in Figure 5.
It 1s seen that the positions of Stations 1 through T are not changed.
The correct positioning of the probe radlally depends on aligning the
probe with the radial lines inscribed on both the top and bottom walls
of the tunnel. However, with the separating flow case, there was only
one set of radiasl lines inscribed on the lucite top. It was impossible
to Inscribe a corresponding set of radial lines on the bottom wall
without taking the outer wall apart. This was not advisable once the
correct pressure distribution has been set up.

The outlet of the total-head probe is connected to the negative
port of & Pace Model CP51D-.1 psid pressure transducer. The positive
port of the transducer is connected to a reference pressure which is
provided by a pitot tube situated in the free stream near the tunnel
entrance. The transducer output is connected to a DISA Model 55D30
Digital DC Voltmeter which can be read to .00l volts. The calibration
of the transducer is described under Section 2.2.1.

At the time the velocity profile measurements were made on the
convex well with constant pressure distribution, the hot-wire equipment
was not available. When the hot-wire equipment was ready, the velocity
profile at Station 11 for the constant pressure flow case was made with
the hot-wire equipment. The velocity profile calculated from the total-
head probe measurement was then compared to the hot-wire measurement and

the two profiles overlap each other (Figure 37). Because of its convenience,
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the total-head probe was also used to measure the velocity profiles
for the separating {low case. However, the total-head probe was not
used to mcasure the velocity profiles in the case of the concave test
wall. Rather, hot-wire was used. The hot-wire technique is described
in Section 2.2.5.

Anticipating the fact that a system of longitudinal vortices
would exit along the concave wall, the 2z positions of the locations
where measurement was to be made could not be selected without a know-
ledge of the vortex system. The x positions of the stations were
chosen at 24, 70 and 96 inches respectively. In order to determine the
z positions, a hot-wire technique (see Section 2.2.6) was used to traverse
the flow at x = 2&, 70 and 96 inches respectively in the =z direction.
The =z positions were then taken to be the tunnel center line or the
positions of the trough and crest of a wave. The reason for this
choice of 2z positions is discussed in Section 3.3 . As a result of the
these traverses, the positions of the five locations chosen are shown
in Figure 6. Shown also are the 2z distance of these stations as
measured from the tunnel center line. The hot-wire probe is introduced
through the inner (adjustable) wall. The same method as before was used
to secure the probe in place and the same technique as that used to
position the Conrad probe radially was used to position the hot-wire
probe. As to the y measurement, a description of the method used is

given in Section 2.2.5.

2.2.4 Hot-Wire Equipment and Calibration

The hot-wire equipment wacd in the present experiment is shown in
Figure 11. It consists of the following standard, commercially available
units: one TSI Model 1010A Constant Temperature Anemometer, one DISA Model
55D10 Linearizer, one DISA 55D35 True RMS Voltmeter, two DISA 55D30 Digital
Voltmeters, one Texas Instrument X-Y Plotter, one Pace Associates X-Y Plotter

and onc Techtronic Twin Beam Oscilloscope. The sensors and the probes were
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obtained from Thermo System Inc. The sensors are tungsten wires and
their characteristic dimensions are .00015 inches in diameter and .05
inches in sensitive length. Both ends of the sensor are copper
plated. Throughout the whole experiment, factory mounted wires were
used. The characteristic dimensions of the probe (see Figure 12) are:
length of stem, 1.5 inches; diameter of stem, .059 inches; length of
prongs, .25 inches; distance between tips of the prongs, .06 inches.
The prongs are gold-plated.

A small portable calibration tunnel was built for hot-wire cali-
bration. The tunnel is of the open-return type and is powered by
a variable speed fan. A diagram of the calibration tunnel is shown in
Figure 13. The air enters through a smooth bell-mouth which is followed
by a layer of honey-comb straightener and a fine mesh screen. This is
followed by a settling chamber that is three diameters long. A con-
vergent nozzle accelerates the flow by a 4:1 ratio, and at the same time
provides an axisymmetric contraction to the flow. The straight calibrating
section is located behind the nozzle, and the station used for calibration
is situated one diameter downstream of the nozzle exit. The air velocity
in the tunnel can be varied continuously from zero to 100 ft/sec. The
velocity at the calibrating station is monitored by a fixed pitot probe
located on the center line upstream of the nozzle entrance and a wall
static hole drilled diametrically opposite the calibrating station. The
turbulence level was measured to be .2% when the air velocity in the
tunnel was 90 ft/sec.

The relation between the ocutput voltage of a constant temperature

anemometer and the mean flow velocity is given by the equation

e” = A+ BU (2.2.4-1)

where A , B and m arc constants to be determined by direct calibration.

In arriving at this equation, free convection is neglected. Therefore,
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in general A 1s not equal to the square of the zero flow voltage,

and this complicates the calibration. The procedure finally adopted

was to determine the constants A and B for different values of

the exponent 1/m by least-square fitting the data to equation (2.2.k-1).
The chosen value of m 1is the one that gives the minimum deviation which

is defined as

1
2 m
o (m) = = (e? - Alm) - B(m) U, )7 (2.2.4-2)
All calibration
points
The data obtained showed no clear minimum for 62 . This means

that the choice of m was not critical for the type of sensors used
and the range of velocities considered. A plot of e versus Ul/m
for different values of m is given in Figure 1k. On the other hang,
it was found that A/eO where e, is the zero flow voltage, corre-
lates very well with m (Figure 15). As a result, l/m was chosen
to be .42 and A/eo was taken to be .89 according to the recommendation
of DISA.

A diagrammatic layout of the hot-wire equipment is shown in Figure
16. TFor the present purpose, the linearizer which is connected in series
with the constant temperature anemometer is just considered to be an analog

computer having a well defined transfer function. A typical calibration

curve of the linearizer output is given in Figure 1T7.

2.2.5 Hot-Wire Techniques

Mean Velocity Measurements

Once the hot-wire has been calibrated, it is a simple matter to use
it to measure the mean flow velocity. The mean value of the linearized

hot-wire signal follows the law

EL = hQf(¢) (2.2.5-1)
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where Q 1is the magnitude of the velocity vector, ¢ is the angle
between the normal to the sensor and the direction of the mean velocity,
and h is the calibration constant. If the cross-flow is negligible
compared to the mean flow U , (this is true for the two cases of
constant pressure flow along convex and concave walls) then Q@ =U .

The function f is symmetric with respect to its argument and is alsé
normalized to 1 when its argument is zero, therefore by aligning the
hot-wire so that its normal coincides with the flow direction,

el = hy (2.2.5-2)

which gives the mean velocity directly.

The straight hot-wire probe (figure 12) with a straight wire was
introduced into the tunnel in the same manner as the Conrad and total-
head probes and was carried by a rotating mechanism - probe carrier com-
bination shown in Figure 10. Due to the fragility of the wire, a
different method was used to determine the y position of the wire.
First, a dummy probe (it can be a hot-wire probe with broken wire) is
used. As before, an electrical circuit is used to indicate contact
between the probe and the wall. The reading on the vernier is noted,
and the probe 1s retracted until it is completely outside of the tunnel.
Then the dummy probe is replaced by a hot-wire probe. Knowing the exact
measurements of the hot-wire probe, the dummy probe and an average value
of the backlash of the probe carrier, the y position of the wire can
be determined to an accuracy of + .008 inches. A detailed description

of this method is given in Appendix B.

Turbulence Measurements

The standard technique used in the measurements of turbulent
stresses is the employment of an X-proie or a V-probe. However, this
method requires accurate alignment of the probe, and this poses serious

problems in the present investigations. 1In addition, if the longitudinal
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vortex system does exist along the concave test wall, the flow will no
longer be two-dimensional and the application of the X-probe or V-probe

will be quite doubtful. For these reasons, a rotating-wire technique

that is a modification of a technique proposed by Fujita and Kovasznay (1968)
is selected. The method is essentially the same as the one used by
Bissonnette (1970), therefore the method will not be discussed in detail
here. Instead, the reader is referred to the thesis of Bissonnette.

The hot-wire probes used are the straight and the slanted probes
shown in Figure 12. With the straight probes two types of wire are used;
one is straight and the other is a 45° slanted hot-wire. With the slanted
probe, only the straight wire is used.

The turbulent stresses can be determined by two sets of measurements,
one set is given by the straight probe with the straight wire, while
the other set is given either by the slanted probe with the straight
wire or the straight probe with the slanted wire. For reasons that
will be apparent later, the turbulent stresses in the case of constant
pressure flow along convex wall were measured using straight wires on
both the straight and slanted probes. For the other two cases, the
turbulent stresses were measured using straight and L45° slanted wires
on the straight probe only.

With the straight wire on either the straight probe or the slanted
probe, the wire rotates in the xoz plane. The coordinate systems
for both the straight wire and the slanted wire are shown in Figure 18.
Both the straight probe and the slanted probe were introduced into the
tunnel the same way as before, and the roation was chosen to span
approximately -45° < ¢ < 45° . 1In order to minimize the backlash errors
the recording of the linearized signal was always performed in the same
direction of rotation. A sample re~ording of the mean value and the
mean square value of the linearized signal versus the angle & of
rotation (straight-wire on straight probe) by means of X-Y plotters are

shown in Figures 19 and 20 respectively. The recordings were performed
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in both directions of rotation to account for the hysteresis due to the
different time constants of the low pass filter and the RMS meter. The
true signal was taken to be the average curve drawn between the two
traces. Recording the signal in this manner was very time consuming
(roughly about 15 minutes per experimental point) and in order to

reduce this experimentation time, the two time constants were chosen

to be approximately the same. Assuming comparable hysteresis in both
cases, recording in only one direction was required, and results obtained
were practically the same as those obtained by recording two traces.

With the L5° slanted wire on the straight probe, the wire generates
a conical surface with axls parallel to the oy axis when the probe is
rotated (Figure 18). In order to avoid the disturbance due to the longer
prong, the probe is positioned in such a manner that the longer prong
is always behind or parallel to the shorter prong during rotation.

For the case of constant pressure flow along convex wall, turbu-
lence measurements were made at Stations 1, 7, 9 and 11, while for the
case of separating flow along convex wall, turbulence measurements were
made at Stations 1, 4, 9, 11 and 12. For the case of constant pressure
flow along concave wall , turbulence measurements were made at all

five stations.

2.2.6 Mapping of the Longitudinal Vortex System

In order to make meaningful measurements on the concave wall, the
question of the existence of the longitudinal vortex system has to be
resolved. From the data of Tani (1962) it can be seen that the vortex
system is very likely to be stationary, otherwise Tani could not have
detected it with a pitot traverse. ¥or the present investigation, a
hot-wire set at a constant distance away from the concave wall is used
to traverse the flow in the 2z direction. The mechanism used to carry
the hot-wire probe and drive it in the 2z direction is shown in Figure 21.

Briefly, the probe adaptor used in conjunction with the TSI miniature
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hot-wire probe is firmly secured to a movable block which slides within
two groves on the strut of the probe carrier (Figure 22). The leads

of the adaptor are connected to a co-axial wire which has a BNC connector
on its other end. The straight hot-wire probe can then be plugged into
the probe adaptor. A constant speed motor is used to drive the movable
block along the strut. The speed of the motor can be varied by regulating
the supplied voltage. The linear movement of the probe is translated
into an electrical signal through a ten turn pot, so that its movement
can be recorded on a X-Y plotter. The probe carrier is so constructed
that the traverse in the 2z direction has a span of 21 inches, and

is centrally located with respect to the tunnel center line. At both
ends of the traverse, there is a limit-switch. When the movable block

is located at either end, it triggered the switch and the motor is turned
off. The pot, the motor and the gear assembly are located on top of the
strut, and a piece of 4 inches thick foam rubber is cemented on the
bottom of the strut. The length of the strut including the piece of
rubber is a bit longer than L feet.

With the straight hot-wire probe in position, the strut was intro-
duced into the tunnel from the top. Tt was then fastened onto the
lucite top by screws as shown in Figure 23. The three rectangular
holes on the top wall of the tunnel at X = 2&, 70 and 96 inches respec-
tively were located in such manner that when there were no spacers in
front of the probe carrier assembly, the hot-wire was exactly .2
inches away from the wall. By moving the spacers to the front, the
hot-wire can be set at ¥y = Ay .6, .8 and 1 inches away from the wall.

The straight hot-wire was positioned to give the maximum voltage
output. The linearized signal was connected to one arm of the X-Y
plotter. The X axis of the X-Y plotter was calibrated to indicate
the 2z position of the probe. The origin of 2z 1is taken to be the
tunnel center line, and 2z is positive when measured upward and negative

downwards. The traverse was always in the same direction, i.e. from top
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to bottom, and the speed of the motor was regulated to give a linear
speed of approximately 6 in/min.

Since the purpose of this investigation was to detect and map
out the longitudinal vortex system, no quantitative measurements of
the vortices were made. Once the vortex system was mapped out, the
locations of the stations where boundary layer measurements were to be

made could be determined.

2.3 Qualification of Curved Wall Tunnel

2.3.1 Two-Dimensional Equilibrium Turbulent Flow in Straight Section

Uniformity and steadiness of the flow in the straight section of
the tunnel was checked by observing tufts attached to the walls of the
tunnel. The equilibrium nature and two-dimensionality of the flow were
checked by actual measurements and comparison with Klebanoff's (1955)
data under similar circumstances.

First, the boundary layer was checked to see if it was turbulent.
To do this, velocity profile measurements were made at Station 1 and
x = 40 inches. Results indicated that the flow was still laminar up to
Station 1 and the boundary layer thickness at x = 4O inches was mch
less than 1 inch. The flow was then tripped a small distance downstream
of the entrance to the straight section. The tripping was effected by
a slightly stretched piano wire covered by electrical tape. The
diameter of the wire was chosen to give a boundary layer thickness at
x = L0 inches of approximately 1 inch. For the sake of symmetry, the
flows on the other three walls were also tripped. With this arrangement,
the flow was found to be turbulent at Station 1, and that the boundary
layer thickness was approximately .6 inches. The total pressure profile
at Station 1 was then measured using the flattened total-head probe and
the velocity profile was calculated together with the skin friction at
the wall (see Section 2.4.2). The defect plot of the velocity profile

was then compared with the zero pressure gradient profile of Mellor
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and Gibson (1966). The comparison is excellent and the result is
shown in Figure 24. The calculated profile is given by the solid line
in the figure. The result indicates that an equilibrium turbulent flow
exists at Station 1.

The rotating-wire technigue was used to measure the Reynolds
stresses. First, the straight probe with the straight wire was used

and this gives the following three Reynolds stresses, namely 2 s uw
and w2 (see Section 2.4.3 for turbulence data reduction). Then the
slanted probe with the straight wire was used. In order to get uv

and ;5 with this probe, vw has to be either known or assumed zero.

In light of the fact that for two-dimensional flow, due to symmetry
about the center line plane, the off-diagonal elements of the Reynolds
stress tensor, except Uv , are necessary zero. Therefore, the assump-
tion of " = O was made so that uv and v2 could be calculated.

In addition, if the measured Uw were indeed very small it would provide
an independent check for the assumption, while at the same time, it would
also serve to show the two-dimensional nature of the flow. To see if
this 1s true, the measured uw was plotted against the measured uv
at Station 1, and is given in Figure 25. It can be seen that nowhere
inside the boundary layer was (ﬁﬁ/ﬁ?) greater than .05 . This shows
that the flow was relatively two-dimensional. To further substantiate
this claim, the measured ﬁV/uET, u‘/Upw s v‘/Upw s w‘/Upw and uv/u'v!
were plotted against y/b and campared with the flat plate data of
Klebanoff (1955). These are shown in Figures 26 to 30. In general, the
measured data compare favorably with Klebanoff's data except near the
wall. This is because the rotating-wire technique is not very accurate
in region of high shear (see Bissomnette 1970). From these measurements,
it can be concluded that the flow was in equilibrium and was indeed two-~
dimensional.

After the first set of experiments with the convex wall was finished,

the pressure distribution on the test section was set up to give a
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separating flow in the curved tunnel. 1In order to make sure that the
same entrance flow exists in this case as in the constant pressure

flow case, measurements at Station 1 were repeated again. Surprisingly,
the measured velocity profile did not show any noticeable difference,
but the measured UV was found to be much larger than before (at one
point UW/UV even amounts to ~.2). Also, the measured EV/uf was
noticeably smaller than the previous data. After a long and tedious
check on the equipment and the rotating-wire technique (including the
test of the technique in the fully developed pipe flow) it was found
that the flow was not transisting properly. The improper trensition of
the flow was caused by the loosening of the tripping wire. As a result,
the transition was not uniform along the walls, thus creating a certain
skewness in the flow, and the off-diagonal elements of the Reynolds
stress tensor was no longer zero. To correct for this, a tripping
device proposed by Hama (1957) was used.

Briefly, the tripping device consists of isoceles triangles made
of either electrical tap or aluminum sheet. These triangles are then
cemented to the walls of the tunnel so that the vertices of the triangles
are facing the flow. According to Hama, the device was very efficient,
and anchored the transition right at the tripping device. With this
modification, the measured uw/uv was again found to be less than .08
across the boundary layer. However, the boundary layer at Station 1
was found to be approximately 20% thicker than the previous measurement.
The measured velocity profile together with the various Reynolds stresses
at Station 1 for the case of separating flow along convex wall are shown
in Figures 24, and 26 to 30. Again the flow was in equilibrium and was
two-dimensional.

When the test wall was changed to the concave wall, the same
measurements were performed at Station 1. However, in this case, the
wall opposite the previous test wall was the test wall. The results

of these measurements are again plotted in Figures 24, and 26 to 30, and
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they show that the flow was in cquilibrium and two-dimensional. In
addition, they show that the flow in the straight section was very

uniform.

2.3.2 Pressure Distribution on Curved Test Section

in the course of setting up the wall static pressure distribution
on the convex test wall it was found that the pressure decreased
slowly as the flow approached the entrance to the curved section, and
then steeply as the flow entered the curved section. The pressure drop
amounts to more than 60% of the reference dynamic head. An effort
was made to reduce this amount of pressure drop by increasing the
cross-sectional area right at the entrance, but to no avail. Ilater
it was found that the flow was separated on the adjustable wall and
right at the entrance to the curved test section. Therefore, increasing
the cross-section area at this section merely increased the separated
region, and the flow on the test wall was undisturbed. To correct this,
a side wall jet was installed on the adjustable wall and right at the
entrance to the curved section. The jet is merely an opneing, four
feet high, on the side wall of the tunnel. The pressure difference
between the outside and inside of the tunnel provides sufficient
momentum to the jet. The opening of the jet is controlled by a flexible
flap attached to the straight wall. The flap extends 8 inches into the
straight section, thus providing some control on the flow approaching
the curved section. The jet and flap control mechanism are shown in
Figure 31. With this arrangement, it was found possible to reduce the
pressure drop to about 30% of the reference dynamic head. However,
the pressure drop cannot be eliminated completely. Because of this,
the final constant pressure distribution set up on the convex wall was
at a different level from that of the straight wall. Immediately after
the pressure drop, there vas a slight pressure increase. All these

occurred within a distance of 6 inches, from x = 46 inches to 52 inches.



After that the adjustable wall was adjusted to give the minimum possible
variation of wall static pressure on the convex wall. The above adjust-
ment was done with no regard to the secondary flow in the tunnel.
Therefore, it was no surprise to find that the secondary flows measured
at Stations 3 and 5 were quite appreciable. Means were introduced to
control the secondary flow (this is discussed in Section 2.3.3) and
this changed the pressure distribution. The secondary flows were
adjusted to a minimum and the adjustable wall was again set to give
the best pressure distribution. The final pressure distribution obtained
for the case of constant presuure flow along convex wall is shown in
Figure 32. The final setting of the adjustable wall is given in Figure 3.
Finally, the wall static pressure at planes 14 inches above and below the
tunnel center line were also measured. If these measurements were plotted
on Figure 32, they would overlap the tunnel center line measurements.
Therefore, for the sake of clarity, the off-center line wall static
pressure measurements are not shown.

In setting up the pressure distribution on the convex wall for
the separating flow case, the objective was to have a linear decelerating
potential velocity at the wall (Figure 82). By pulling back the adjustable
wall, this was relatively easy to set up in the curved section between
X = 50 inches to 60 inches. After x = 60 inches, the pressure distri-
bution began to level off. Again, the adjustable wall was pulled back,
but there was relatively little change in the pressure distribution at
the test wall. At this point, the flow was suspected to have separated,
but the line of separation was not known. 1In an effort to locate the
separation line, tufts were attached to the convex wall between x = 60
inches and TO inches at an equal spacing of two inches apart. The effort
proved to be futile, but it did seem to indicate that separation did not
occur along a straight line from the top to the bottom of the tunnel.
There was clear indication that the flow separated first near the top

and bottom of the tunnel and further downstream along the central
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portion of the tunnel.

Attempts were rmade to move the separation curve further downstream
by readjusting the whole adjustable wall. The results was a non-linear
distribution of decelerating potential velocity at the convex wall.

After much trial and error, the original pressurc distribution was set
up. This is given in Figure 32. The final setting of the adjustable
wall is shown in Figure 3. The linear distribution of decelerating
potential velocity at the wall is displayed in Figure 81, together with
the actual measured potential velocity at the wall. As far as can be
made out from the tufts, separation occured somewhere between Xx = 66
inches and TO inches. Iater measurements of the velocity profiles lend
evidence to this. The secondary flows at Stations 3, 5, 8 and 10 were
then measured, and the end-wall jets were adjusted to give the minimum
secondary flow at these stations. The pressure distribution was measured
again, but in this case no repeated adjustments were made as in the case
of the constant pressure flow. The final results are those mentioned
above. The secondary flow measurements are discussed in detail in the
next section.

The wall static pressurc at planes 1k inches above and below the
tunnel center line was measured. The difference between these measure-
ments and the tunncl center line measurements werc very small at the
leading section of the convex wall, and became noticeable near separation.
However, for the sake of clarity, they are not shown in Figure 32.

Tor the concave test wall, the pressure at the wall increases as
the flow enters the curved section. In order to reduce this pressure
increase, the flow in the region upstream and downstream of the entrance
to the curved section was accelerated by adjusting the adjustable wall.
As a result, no side wall Jjet was necessary. The adjustable wall extends
one foot into the straight section, and this provides sufficient
adjustment for the region upstrean of the entrance to the curved section.

Again, after much trial and error, the final constant pressure distribution
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set up on the concave wall is at a level about 22% higher than at the
straight section. The pressure distribution is given in Figure 33,
while the final setting of the adjustable wall is shown in Figure L.
In this case, the variation of the wall static pressure in the stream-
wise direction is greater than the corresponding case with the convex
test wall. Efforts were made to reduce these variations but to no avail.
The wall static pressure at planes 1L inches above and below the plane
of symmetry vas alsc measured. Again, there were noticeable differences
between these measurements and the tunnel center line measurements. To
show the extent of these variations, the off center line wall static
Pressure measurements are also shown in Figure 33.

As in the case of the constant pressure flov along convex wall,
the secondary flows at planes 16 inches above and below the tunnel center
line were measured, and the end wall jets were adjusted to give the
minimum secondary flow. The pressure distribution was then re-set and
the secondary flow was again measured and readjusted if necessary. The
whole procedure was repeated until a satisfactory pressure distribution
was obtained together with a reasonable secondary flow at the stations
where measurements were made. The secondary flow measurements are

discussed in detail in the next section.

2.3.3 Secondary Flows in Curved Test Sections

As has been explained in Section 2.2.2, secondary flows exist near
the end walls of the tunnel because of the longitudinal curvature of
the test section. The influence of this end-wall flow can extend to
the tunnel center line.

When the tunnel was first designed, it was thought that if it has
a large aspect ratio, the secondary flows would be essentially confined
to small regions near the end walls. However, initial yaw measurenments
at Stations 3, 5, 10 and 12 on the convex wall, with the constant pressure

distribution along it, revealed that the measured yaw angles at Stations 3,



and 5 werec approximately equal and were opposite in sign but they
reached a maximum of ~ 10°. The maximum reached at Stations 10 and

12 was about 20° . To reduce the secondary flows, end wall Jets were
installed on the top and bottom walls of the tunnel and right at the
entrance to the curved section (Figare 31). A series of four tangential
jets were installed on each end wall. The jets were made of 1/8 inches
I.D. tube, and were supplied by a high enough pressure to gilve critical
flow at the jet exits. Thus, the amount of mass flow added to the
tunnel flow is quite small while the amount of momentum added is enough
to compensate the momentum defect of the end wall boundary layers at the
position of the jets. This additional momentum is sufficient to reduce
the sccondary flows considerably even at Stations 10 and 12.

With the end wall jets installed, yaw measurements were again mde
at Station 3, 5, 10 and 12. The maximum yaw angles at Stations 3 and 5
and 10 and 12 were found to be less than 2 and L° respectively. By
monitoring the yaw angles at Stations 3 and 5, repeated measurements of
the pressure distribution along the convex wall and continually adjusting
the edjustable wall to give the minimum variation in the streamwise
pre ssure, 1t was possible to set up the best constant pressure distribu-
tion on the convex wall. The resultant yaw measurements at Stations 3,

L 5, 10, 11 and 12 are shown in Figure 34. The flow in the tunnel was
rzlatively two-dimensional. Iater velocity profiles and turbulence
reasurcments lend support to this claim.

Essentially the same end wall jets operating at the same conditions
were used to control the secondary flows in the case of separating flow
along convex wall. In this case, because of the added complexity in
setting up the correct pressure distribution, the procedure followed
was different from that adopted in the case of constant pressure flow along
convex wall. The correct pressure distribution was set up with the end

wall jets operating at the optimal conditions. Then, yaw measurements



vwere made at Stations 3, 4, 5, 8, 9 and 10. The results are shown in
Figure 35, and for the sake of clarity, the yaw measurements at Stations
4 and 9 are not shown. The maximum yaw measured at Station 4 was less
than 1° and that at Station 9 was less than 2°. Although the flow along
the tunnel center line is quite symmetrical, the secondary flows at
Stations 8 and 10 are considered large. Attempts were made to reduce
this by installing larger jets to the end walls. This managed to

reduce the secondary flows. However, the pressure distribution along
the convex wall was disturbed, and it was not possible to obtain a
linear decelerating potential velocity at the wall. After much trial,
it was finally decided to go back to the original set up. later
velocity profile and off center line wall static Pressure measurements
seem to indicate that the flow was relatively two-dimensional up to

X ~ 60 inches. Downstream of x = €0 inches, the influence of the
secondary flow can no longer be discounted.

For the case with the concave test wall, secondary flow measurements
were taken on the adjustable wall opposite the concave test wall. The
reason for doing this is becausc of the existence of the system of
longitudinal vortices. Under the influence of the longitudinal vortices,
the secondary flow measurements would depend to a large extent on where
the measurements were taken. As a result, the true influence of the
end-wall secondary flows cannot be estimated.

From previous experiences, yaw measurements at tunnel center
line were found to be unnecessary. For this reason yaw measurements
were made at planes 16 inches above and below tunnel center line at
x = 70 and 96 inches for the case of constant pressure flow along concave
wall. The same end wall jets were used to limit the secondary flows to
small regions near the end walls. The pressure distribution was set up
on the concave wall, and yaw measurements were made at the off center
line stations at x = 7O inches. The supplied pressure of the Jets

was then adjusted to give minimum yaw at the two stations where
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measurcments were made. The pressure distribution was measured again,

and if considerable changes were noticed, the above procedure was repeated
all over until a satisfactory pressure distribution on the concave test
wall and a relatively small yaw profile across the boundary layer on

the adjustable (convex) wall were obtained. The final yaw measurements

at x = T0 and 96 inches are given in Figure 36.

2.4  Data Reduction

2.4.1 (alculation of Velocity Profiles

Assuming %§-= pkU2 , Bernoulli's equation may be written as
1 2 L _ _ _ 2ky -2ky _
zpUS = P -P + (P, - Py 2k fo(Pt Pr)e dyle (2.4.1-1)

where the reference pressure Pr is here taken to be the total pressure
in the potential core so that Pt - Pr - 0 outside of the boundary
layer. Therefore the potential velocity is given by

) 2ky -2ky
- - - - 2.4.1-2
P (p, - P -2k fz (p, - P e " dye (2.4.1-2)

N~

Within the boundary layer ky < 0.1 and it is possible to simply
represent the potential velocity according to UP 04 Upw(l—ky) (see Section
4.2). Furthermore, the integrals in equations (2.4.1-1) and (2.4.1-2),
which represent the difference between the static pressure calculated
from the actual velocity and the potential velocity, are small. Therefore

it is possible to write

2 P, - P
-2
Y T S (2.4.1-3)
U2 Pr - PSW
pW
and
U2
L - "Ry (2.1.1-k4)
IJInJ
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where

3 U, = B P (2.4.1-5)

In Figure 37 the result of using equation (2.4.1-3) to reduce
the data is compared with that of equaticn (2.4.1-1) which is also
normalized with equation (2.4.1-5) instead of equation (2.4.1-2) after
setting y = O . The latter would be the consistent normalization if
equation (2.4.1-1) were used, but then no distinction would be visible
in Figure 37.

As discussed in Section h.2, the present procedure is consistent
with the boundary layer equations used to compute theoretical profiles.
It should be noted that throughout this investigation ky < 0.1 and
e"ky ~ 1 - ky . However, it appears exceptionally convenient to retain

the complete exponential form.

2.4.2 Skin Friction Deduction

The skin friction at the wall was not measured, but rather it was
obtained from the Clauser plot (1956). For curved flow, the skin
friction is defined as

T = %¢ pIJ2 (2.4.2-1)

W 2¥r oty
and since the Clauser plot is independent of the reference velocity

chosen to make the velocity profile non-dimensional, the reference

velocity is here chosen to be U . The velocity profile was calculated

yUPW
e

several plots of the law of the Wall for different values of Cf « The

and U/Upw wvas plotted aginst 1log On top of this was superimposed
line that passes through the most numbers of experimental points is

taken to give the correct Cf for the measured profile. The correct

Cf becomes a bit difficult to decide for the near separation profiles.
Two sample plots of the velocity profiles for the determination of ¢

f
are shown in Figure 38.
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o.4.2 Ccalculation of the Reynolds Strcsscs

The general cquations for analyzing the hot-wire signal were
derived by Bisoconnette (1970). However, they arc recordcd here for
reference. These equations are specialized for the usc of a lincariner

with calibration constant h .

Straight Wire on gtraight and Slanted Probes

$ =56 -B (2.4.3-1)
e = hat( o) (2.4.3-2)
-3 o 2, o — 2 ¥ ,
212 -7 (£(e W - ef(e)Er (o) + £ (e) W ) (2.4.3-3)-
where
2 ¢

u = u
—_— —¥ —

2 —% 2
v2 = v2 sin 9 + 2vw sing cosf + w2 cos 0

—
= 2 ¥
wd = ;E* cos 0 - 2vw sind cosf w2 sin ©
i ¥ ¥
v = - uv sing + uw cosd (2,&,3-&)
— ¥ ¥
uw = - uv cosg + uw sind
—_— —_* % 2
VW = - v2 sing cosg + vw s5in @
%

—* 2 2 )
- v ¢cos 8 + W sing c¢os@

g is the anglc between OZ axis and the normal to the wire, and

¢ ,  and g are defincd in Figure 18.

sxmmdwneonsmmgm]%me

sind = siny sin(5-B) (2.4.3-5)
EL = hQf(¢) (2.4.3-6)
— 22 TE 05T 20y B

el = h (£ ()" + 5o T (¢) v +

cos™ ¢



2 *
i 2 S
+ EEEEZ cos (5-8) fl2(¢) we . p 8057

cosé
cos ¢
51 S —X
2(e) £1(6) W' + 2 TN oog(5) £4%(0) T
cos ¢
i %

-2 2L cos(s5-p) £(0) £1(¢) wr ) (2.4.3-7)

cosé

Where
NN IERN
U =u" cos B - 2uw singcosg + w° sin B
2
v = v
2 _ 2 2 —x 2 2
¥ o =u sinp + 2 uw singcosg + w* cos B
—— — — (2-’4‘-3"‘8)
uv = uv cosp - vw sing
—  —% —%
VW = uv sing + vw cosg
—%

T (o2 2 2oz
w =uw (cos'p - sing) + (u° - w ) singcosg

The quantities with an asterisk refer to flow quantities defined
in a frame of reference attached to the wire (wire coordinate system)
vhile those without an asterisk refer to flow quantities defined in a
frame of reference attached to the tunnel (tunnel coordinate system).

For the two cases where the test wall was convex, all measurements
were made in the tunnel center line, therefore the cross-flow was very
small (except near separation in the separating case) and B~ O . With
the straight wire on the straight probe, ¢ = n/2 and the wire coordinates
coincide with the tunnel coordinates. As a result, equation (2.4.3-L4)
is mch simpler and 2 = w2 Ve = w?* , UV = UV, etc. With the
straight wire on the slanted probe, 6 ~ 4é° and the turbulent stresses
are given by equation (2.4.3-4),

For the case of constant pressure flow along concave walls, measure-

ments were taken at the position of the crest and trough of the wave

system and it was argued that the cross-flows at thosc two positions were



very small, (for reason why refer to Section 3.3) hence B~ O . This
again allows the equations for the signal analysis to be further reduced.
The x coordinate of each plot is calibrated to give the angle of
rotation & . Once o and B arc known, ¢ is given by either
equations (2.4.3-1) or (2.4.3-5). The function f(¢) is normalized by

the maximum on the trace, 1.e. EL(O) and is therefore given by

o]
—

L ¢)
£(e) = o) (2.4.3-9)
L

|
—

For the sake of simplicity, the functional form proposed by

Champagne et. al. (1967) for f£(¢) is used, i.e.

2 2 2 2
£(¢) = cos ¢ +k sin ¢ (2.4.3-10)

where X is a constant, and is determined for every run by fitting
2

equation (2.4.3-10) to the experimental data. Taking k  to be the

mean value over all data points, it is given by

N 2(s.)/e2(0) - cos®o,
L > L = (2.4.3-11)

-
i
b=

. . 2
i=1 sin ¢,
i

With the function £(¢) defined, the turbulence stresses w2 , w°  and

ﬁﬁ* can be obtained by least square fitting equation (2.4.3-3) to

the experimental record of eia . These values are then substituted into
equation (2.4.3-T) and the other Reynolds stresses uv , v and W
are computed by a similar technique.

As explained earlier, the cross-flows are small for all cases of
measurements and hence no corrections are necessary. Hence, in adapting
Bissonnette's (1970) data reduction program for the present purpose 8
was set equal to zero. The accuracy of the rotating-wire technique was
tested in a fully developed turbulent pipe flow experiment. From the

measured axial pressure drop, the shear stress distribution across the

<N
e



is used to check the measurcd shear
In general, the accuracy of the retating-wire technique
ic very good except ncar the wall. This experiment is deceribed in

detail in Appendix C.

(R
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Chapter III
DISCUGCION OF RESULTS

In the following, the discussion is divided into threce scctions.
The firct deals with the results of the constant presoure flow along
convey wall, the sccond concentrates on the results of separating flow
along convex wall, while the third discusses the results of the conctant
pressure flow along concave wall.  The discussion takes the following
format. The mean flow data arc analysed first and this is then followed
v a discussion of the turbulence data. The results of these experiments
are tabulated and arc given in Tables 1 to 35. Tables 1 to 12 contain
the renults of the mean flow and turbulence measurcments of the constant
precmare {low along convex will experiment. Tables 13 to 25 contain the
date of the mear, Tlow and turbulence measurencents of the separating
flow along convesx wall experiment, and the mean flow and turbulence
data of the constant prossure flow along concave wall experiment are
given in Tableo 26 to 35. TFor all threc cxperiments, the free streanm

i

turtulence 1ovel in the stroicht section 1o less than S0,

3.1 Conctant Procoure Fiow wlong Convex Woall

The end wall jots wer inctalled for the sole parposc of conlrolling
the secondary Tlows In the curved test coction of the tunnol. FBEvidence
thot the Tlow was very noarly two-dimenslonnd woere the small yoaw angloes
meacured al Stations 5, 4, 9, 10, 11 and 12 (Figure 3k4), and the
apparently ddentical prossuvrc dictributions at tunnel center line and
plancs above and below the lunncl center line. Besides, the velocity
profiles neasured at Stations 3 and 5 and 10 and 12 werc no different
from those meacured at Stations 4 and 11 respoctively (FPipure 39). To
further cheek the two-dimonsionalilty of the [low, thoe von Karman

momontum intogrel was integrated according to the method propoccd by

Coles (1908 .,



The von Karman momentum integral is derived in Section 4.2, and

is given by equation (4.2-22)., It can be written as

2
u du

T ds o dk
—_ = = 2) =— - —

2 dx * (H+ ) U d x q(x) dx
18] W

;%

where

ax) = [T y(1- LLp)dy + [0 2y %I-)(l- g;)dy

Following Coles (1968) procedure, the equation can be written as

2 2 2
u_ L_Ue_lixidum
£ w2y "o " (w2 ) ety 31
O ol=
1 x “pw
dr
+foo 5— a(x)dR(x)
o]

where the subscript o denotes measurements in a reference station. To
integrate this equation, values of 6* » 6 and u at the various stations
are required. The values of 6* and ¢ are obtained by direct numerical
integration of the measured profiles, which are shown in Figure 39,

while the skin friction is obtained from the Clauser plot. The values
thus obtained are plotted verses x in Figure 79, together with the

shape factor (H) development. From these measured values, equation
(3.1-1) is integrated numerically and the result is shown in Figure Lo,

It can be seen that all along the convex test wall P (it denotes the
quantity on the left hand side of equation (3.1-1)) is not too much
different from PR (it denotes the quantities on the right hand side of
equation 3.1-1)), hence the two-dimensional momentum integral is satisfied
and the flow can be said to be relatively two-dimensional. Further evi-
dence of two-dimensionality is provided by subsequent turbulence measure-

ments, however, this will be discussed later.
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Since the skin friction is not measurcd independently, the momentun
palance calculatlion depcends to a large extent on the validity of the
Clauvser plot to determine Cf for curved flow. To demonstrate the
validity of this method it is neccssary to show that the law of the
wall holds even for turbulent flow along convex surfaces. The
measurcd velocity profiles were plotted to show the Iaw of the Wall
region using the u’r determined from Clauser plot. If the Law of the
Wall indeed holds for curved flows as well as for plane flows, then a
straight line having a slope of 5.6 can be drawn through all the data
points in the wall law region. The result 1s shown in Figure 41, where
it can be seen that the measured profiles all show the existence of
the wall law region. Also, all the profiles shown start to deviate
at about the same point (yuT/v': 200) where the flat plate profile
(station 1) begins to deviate from the Law of the Wall. Thus, it can
be seen that the Iaw of the Wall, which is given by

U yuT
— = 5,6 log — + B (3.1-2)
u v

also holds for flow along convex surfaces. However, this should come as
no surprisc, becauce in this rcgion the mean flow strcamlines are
essentially prallel Lo the surfacc.

By comparison with planc {low, the Defect Iaw Tor convexly curved

flow can be written as

Up -V Y
— = F\ " 3.1-3
oG (3.1-3)
where
Up - U
o Ay
A= o . y

If the defect region overlaps with the wall law region, then the function
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F(y/A) can be shown to be

F(X)~ - 5620y + 4 (3.1-L)

Mellor and Gibson (1966) have pointed out that A is not truly a
constant. 1Instead, it is a function of the equilibrium parameter
*
a
B = 6 dp ; and for B = 0 , which is the flat plate flow, A ~ -~ 0.6 .

Ty ax

Since the Law of the Wall also holds for constant pressure flow along
convex surface, therefore, the Defect law as given by equation (3.1-3)
should also hold. However, A should also be a function of some
curvature parameter. A semi-log plot of (Up-'U)/uT verses y/A will
indeed show that A depends on curvature. This is displayed in
Figure 42. Therefore, it can be seen that A = A(&5/R ,5);*

The assumption of an overlap region means that U can be described
equally well by the Law of the Wall (3.1-2) or by the Defect Law (3.1-3).

These equations may be added to give the skin friction equation

—

z U
(_?_) - - 561g Ry +B+A4 (3.1-5)
Cr u 5"

*
where Au; =U - 5 is substituted to give the final equation and

Rfr 1s the Reynolds number based on 5% which is defined as
o

- U
U
¥ = L (- W (3.1-6)
oU U
oW b
In obtaining equation (3.1-5), it is assumed that Up ~ Upw as
y/A = 0 . The skin friction equation thus deduced is quite gencral.

It applies to all types of boundary layer flows over plance or convex

The reason for suggesting 5/R is becausc for the present experiment
5*/R is constant. Besides, & remains relatively constant along
the convex wall; thus, rendering 6/R a very natural curvature
parameter to use.
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surfaces sc long as A(8/R,g) is known.

For convex curvaturc, A is positive, thercfore, according to
equation (2.1-5), Cp will decrease faster than the corresponding flat
plate flow. This means that the flow 1s less "turbulent-1like", and as
a result, the flow cannot custaln as high a pressure gradlcent as the
the corresponding flat plate flow. In other words, under the action
of the same advcrse pressure gradient, the flow over a convex surflacc
will separate first. This is a direct consequence cf the reduced mixing
activities between fluid layers, which can be seen from the following
explanation.

For flows over convex surfaces, the centrifugal force on a fluid
particle must be palanced by an inward pressure gradient. If a particle
is moving too slowly, its centrifugal force is too small, and 1t moves
inward. Hence, it can be secen that the fluid particles that move away
from the surface carry with them the velocities at the points where they
come from will have a smaller centrifugal force at theilr new locations*.
As a result, they will be pushed inwards by the pressure gradient and
hence the interchange of momentum, energy, etc., between the faster
and the more slowly moving particles are hindered. Thus mixing of
momentum in the boundary layer will be reduced. This is evident from
the measurementc. At Station 1, the boundary layer thickness, & , 1is
about 0.55 inches, and © grows to about 1 inch at the entrance to
the curved section. The boundary layer thickness at Station 2 is about
1 inch, and it remains constant up to Station 11 (Figure 39). Thus, it
can be secn that the boundary layer has not grown at all under the
influence of convex curvature.

By comparison with the flat plate equilibrium boundary layer,

*

This is Prandtl's mixing length argument which says that the linear
momentum of the fluid particle is conserved when it is displaccd from
layer y to a new location at layer y + dy .



U -u

a=f

o u
T
of the boundary layer. Thercfore, a plot of

dy should be a characteristic length in the defect region

verses l)—; would
show whether the present flow has reached an equilibrium ctate or not.
Such a plot is given in Figure 43. TFrom this plot, it appears that the
flow has reached equilibrium at Station 11. However, this condition

is not sufficient to demonstrate the equilibrium nature of the flow.
Further evidence should be obtained from the turbulence measurements.
This point will be discussed again in the following.

The decrease in mixing activities is also evident from the
turbulence measurements. The distribution of turbulence intensities
and turbulence energy are shown in Figures LL, 45 and L6 respectively.
It can be seen that there are significant decreases in turbulence
intensities across the boundary layer. of course, the results are
influenced by the favourable pressure gradient at the entrance to the
curved test section.

After the favourable pressure gradient, which only extends to
Station 2, the only external force that acts on the fluigd particles is
the centrifugal force created by the convex curvature. TIn the absence
of wall curvature, the boundary layer would recover from the
favourable pressure gradient and flat plate equilibrium would again be
reached at about Station 9 (later calculations lend evidence to this).
This means that mixing between fluid layers and turbulent diffusion
would bring the level of turbulence right back to the flat plate values®.

However, under the influence of convex curvature, the turbulence
intensities are prevented from recovering. This is clearly evident from
the measurements at Stations 7, 9 and 11 (Figures 4h, 45 and L6).

Convex curvature acts to prevent mixing and diffusion of fluid particles

outward, therefore, after the deccrease in turbulence activities caused

*As evidence by the fact that the turbulcnce measurements at Station 1
correlate well with Klebanoff's (1955) data. This shows that the distri-
butions of u'/Ul B v'/Ul and w'/Ul are the same for all cquilibrium
flat plate boundary layers.



by the favourable pressure gradient, the centrifugal force prevents any
further inercase in turbulence intensities. This is why the turbulence
meacurcrents at Stations 7, 9 and 11 are quite similar to each other.
Tt should be pointed out that there arce very little turbulence activity
in the outer part of the boundary layer, i.c. y/6 > 0.4 . Instead of
increasing from Stations T to 11, the turbulence intensitics decrease.
Oon the other hand, the turbulcence intensities near the wall increase
slightly from Stations 7 to 11. This indicates that the effect of
curvature is much greater in the outer part of the boundary layer than
near the wall. On the other hand, the similarity of the distribution
of the turbulence intensitics at Stations T, 9 and 11 seems to indicate
that the flow has reached a new equilibrium state. If this is so, then
the shear stress profiles at Stations 7, 9 and 11 should also be similar
From examination of the measured shear stress profiles in Figure bt it
appears thet the flow has not reached an equilibrium state.

The flow, after recovering from the initial favourable pressure
gradient, settles into a kind of quasi~equilibrium state where an inner
region of rotational mean flow and non-zero Reynolds stress (y/& < 0.4 in
Figure 47) is embedded in a larger region (y/5 < 1) of rotational mean
flow but zero Reynolds stress. Presumably the inner region would
slowly grow until it coincides with the mean rotational region. Only
then will it be an equilibrium flow in the conventional sense. 1In the
outer part of the boundary layer, it is clearly evident that the
neurvature effects" counteract the usual shear stress producing mechanism.

Since the shear stress is not measured by a conventicnal nethod,
there is always doubt as to the rcliability of the data, especially the
"inviscid like" nature of the flow in the outer part of the boundary

layer. For the present case, a slanted probe with a straight wire is

used to measure UV , v- and W . It was pointed out in Section 2.k.3
that in reducing the data for uv and ve , VW is assumed zero. This

assumption is justified becausc of the relative two-dimensionality of



the flow*. As an independent check, the mecasured uw (which can be
obtained directly by rotating the straight probe with a straight wire

in the u and w plane) is found to be very nearly zerc. A plot of

uv and UV measured at Stations 1 and 11 is given in Figure 25. Tt

can be seen that nowhere is uw greater than 5% of uv . This not

only serves to show the true two-dimensional nature of the flow in the
curved test section, but also the reliability of the measured shear stress
profiles and the fact that the stress vanishes when y/& > 0.4,

The distribution of shear correlation coefficient is given in
Figure U48. For equilibrium flat plate boundary lyaer, the shear corre-
lation coefficient is constant ( .5) for a greater part of the boundary
layer, but drops to zero rapidly near the edge of the boundary layer
(measurements at Station 1). For flow over convex surfaces, the shear
correlation coefficient also remains constant (the constant varies from
Station to Station) for a greater part of the "shear thickness", but
drops to zero rapidly near the edge of the shear stress profile. The
constant reached by the shear correlation coefficient is .38 at Station 9
and .45 at Station 11.

The turbulent energy equation can be obtained by adding equations

(BE-14), (E-15) and (E-16). The result is

2 2
a2 _ 2y 3 39°/2
~ = - uv (By - kU) + (ay + k) {(q£3 +v) 55
— 5 (3.1-12)
3. 2D 0a7/p 3

3
+(é‘;+k) ((qz3 +V)5-y—] +§a—y(qfieay b -3

From this equation and the three fluctuation components given by equations

(E-14), (E-15) and (E-16) or equations (E-1), (E-2) and (E-3), the following

*
For two-~dimensional flow, becausc of symmetry about the center line
plane, uw and VW are necessary 2ero.



points can be noted. First, turbulent encrgy is not produced only in

u2 as in the case of a plane flow but also in Ve . Second, the transfer

of energy betwecen w® and v2 is due both to the pressure fluctuation
kuev
and also to the term Triy appearing in equations (E-1) and (E-2).

Third, the total energy production on all fluctuation components is
— ., 3U
- uv (— - kU
& - )

A plot of the energy production 1s given in Figure LG9, The smaller
turbulent energy production explains the spaller turbulence intensities.
Finally, the influence of the ;E- production term, (+2k Gv U) in
equation (E-2) or (E-15) on the flow should be pointed ocut. For flows
over convex surfaces, k is positive, therefore 2k uvU is positive
and this means a suppression of ;E production. Hence, the radial
movement of a fluid particle is suppressed. As a result, mixing
activities between fluid layer are reduced. This means that radial dis-
placement of a fluid particle in flows over convex surfaces is stable,
Eskinazi and Yeh (1956) were the first to point out that this is in
agreement with the stability criterion put forward by Reayleigh.

The advection and the production by normal stresses are also cal-
culated and shown in Figures 50 and 51 respectively. In flat plate boundary
layer the advection is very much smaller than the production except in
the outermost part of the layer. The present result shows that in the
inner part of the layer (y/5 < 0.4), the advection is one order of magni-
tude smaller than the production (Figure 50). As to the outer part of
the layer, curvature counteracts to reduce turbulence. The result 1is
that the advection is nearly zero in this part of the layer. The production
of normal stresses has been evaluated (Figure 51) to show that it is
always srall in comparison to the production. For the present experiment,
the production of normal stresses 1is about two orders of magnitude smaller

than the production.
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3.2 Separating Flow Along Convex Wall

The setting up of the adversc pressure gradient for this cxperiment
has already been examined in detail in Section 2.3.2, therefore, this
will not be discussed again. However, it should be pointed out that a
separating flow was obtalned on the convex test wall. Although it was
not possible to locate exactly the separation line, indications are that
separation occurred around Station 11, at x = 66.0 inches. 1In this
connection, it should be mentioned that later boundary layer calculations
predict separation to occur at x = 67 inches (see Section 4.6.1).
Because of the disturbing influence of the secondary flows near the end
walls of the curved section, most likely separation would not occur
along a line parallel to the 2z axis. Yaw measurements at Stations 8
and 10 (Figure 35), incidate that there is significant cross-flow at
X = 62.5 inches. This means that there is convergence in the flow at
this plane, and as a result, the flow would most likely separate first
near the end walls than along the tunnel center line. Velocity profile
measurements at Stations 8 and 10 (Figure 52) lend evidence to this as
do the measurements of wall static pressure at planes 14 inches above
and below tunnel center line. Because of this, the flow in this region
can no longer be said to be two-dimensional. This fact is bornc out by
the momentum balance calculation.

In order to make use of equation (3.1.1) for the momentum balance
calculation, the skin friction Cf and the boundary layer intcgral
paramcters ¥ and 0 have to be known. Since the Iaw of the Wall is
independent of the free strecam conditions, and has previcusly been
verified for flow over convex surfacecs, it is ascumed to be valid for
the present experimental flow. This means that Cy can again be deter-
mined from the Claucer plot. The velocity profiles arc numerically
integrated to give ¥ and 0 . Becausc of the errors imvolved in the
velocity profile mecasurcments near separation (i.e. at Stations 9 and 11),

the calculated 6* and @ at these two stations would be smaller than



the true values. This should be borne in mind when examining the
momentum balance calculation.

The results of the momentum balance calculation using equation (3.1-1)
is given in Fipure L4O. It can be seen that up to x = 59 inches, the flow
is fairly two-dimensional, but the flow begins to deviate from two-dimen-
sionality after that. This is consistent with all other measurcments.

The development of ¥ and 6 is shown in Figure 83 and the

development of €, and H is given in Figure 84. It can be seen that

f
5% and 6 increase steeply towards separation. However, 5* increases
much faster than 6 , resulting in an extremely large slope for H near
separation. Again, this lends evidence to the fact that the flow

separates around x = 66 inches. Because of the errors in the velocity

profile measurements near separation, the (C_. determined from the

f
Clauser plot would also be in error. Since near separation, the measured

velocity is higher than the true value, the Cf determined from Clauser

plot would tend to bc greater. This is borne out by the fact that the

measured Cf at Stations 9 and 11 are greater than the calculated C

(see section 4.6.1 and Figure 84).

T

The measured velocity profiles are plotted in Figure 52, and the
results show that the measurements near the wall at Stations 9, 11 and 12
are in crror, because the measurements give a near constant velocity in
this region. In actuality, this is not the case, especially at Station 12,
where the flow is known to have separated. Also shown are the off center
line velocity measuremcnts at Stations 3, 5, 8 and 10. Again, the
results substantiate the claim of two-dimensionality at Station 4, but
not at Station 9.

The semi-log plot of the measured velocity profiles at Stations U,

T, 9 and 11 is given in Figurc 53. The friction velocity u'r is calculated
from the measured Upw and Cf . Again, the velocity profiles show the
existence of a wall law region, and that all the data points in this

region fall on the Iaw of the Wall, thus giving support to the claim that



the law of the Wall also applies to flow over convex surfaces in an
arbitrary pressure gradient. This should come as no surprise, because
for plane flow, the Iaw of the Wall has been shown to be independent of
the free stream conditions.

By compurison with turbulent boundary layers over plane surfaces,
it can be expected that the Defect Law also holds for boundary layers
over convex surfaces in arbitrary pressure distribution. A semi-log
plot of (UP—U)/uT verses yﬁg is given in Figure 5hk. Again, the result
shows that A is also a function of &/R . Therefore, the skin friction
relation as given in equation (3.1-5) is also applicable to convexly
curved turbulent flows in adverse pressure gradient.

In previous experiment, the straight probe with a straight wire

2

, uw and W . The slanted probe with a straight

was used to measure u
wire was used to obtain UV and ;E , while VW was assumed Zzero.
However, for the present experiment, due to the disturbing side influence
of the secondary flows at x = 62.5 inches, it was felt that the assumption
of Vv =0 may not be a good one. Therefore, a straight probe with a
slanted wire was used to measure uv , v and W (see Sections 2.2.5
and 2.4.3), while the same technique was used for the measurements of
w2 , uw and ;E . The results of the measurements at Stations 1, k4, 9,
11 and 12 are given in Figures 55 to 62, gince the flow separates around
Station 11, not too much significance should be attached to the measurements
near the wall at Station 12. This is because there is probably a small
reverse flow region at Station 12. However, the measurements at the outer
part of the boundary layer would provide some insight inpto the nature of
separated flows, therefore the data at Station 12 should be examined in
this light.

The neasurements at Station 1 serve to establish the reliability
of the slanted wire technique to measure UV . At the same time, the

measured Vw would also indicate the validity of the assumption Vw = 0

made in the measurements of the previous experiment. The measured W
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and vw are shown in Figures 55 and 56 respectively. In Figure 57

the distribution of u® 4is shown. Tt can be secn that at Station 1,

novhere arc uw and VW greater than 5% of Wl . Also,

ct

he measured
turbulence intensities and shear stress at Station 1 correlate well with
the measurements at Station 1 of the previous experiment and with the
data of Klebanoff (1955). This establishes the reliability of the
slantcd wire technigue to measure uv . It also provides evidence to
support the claim that the flow is truly two-dimensional in the straight
section.

As to the measured Tw and VW in the curved test section, the

results show that toward separation, uw and vw are as high as 20% of

u2 . This is particularly true near the edge of the boundary layer

where GE is relatively small as a result of the effect of convex

curvaturc. At Station 4, Uw and vw are about 10% of w?  for the
greater part of the boundary layer. However, since the error of the
rotating-wire method as determinced in the fully developed pipe flow
experiment (Appendix C) and the measurements at Station 1 is about 5% ,

the flow at Station 4 can still be considered to be fairly two-dimensional.

At Stations 9, 11 and 12, cven discounting the error of the rotating-wire

method, v and Ww still amount to about 15% of u? . To the best

of the author's knowledge, no measurcments of TUW and VW are available
for boundary layers in an adverse pressure gradient. Therefore, it is
hard to cstimate whether the UWw and VW are the result of the effect
of convex curvature or the three-dimensional nature of the flow.
However, from the recults of the measurements of the constant pressure
flow experiment, it is very likely that Ow and VW arise as a result
of the convergence of the flow towards separation.

From the flat plate experiment of Klebanoff (1955), it is known that

2 ana w2) reach their maximum very

the fluctuation velocities (u2 , V
near to the wall. The separating flow experiment of Schubauer and

Klebanoff (1951) showed that under the influence of an adverse pressure

53



gradient, these maxima slowly move away from the wall. The same
phenomenon is observed in the present experiment, but the effect of

convex curvature tends to reduce the maximum reached by the fluctuation
velocities (see Figures 57-59). Again, this is due to the fact that convex
curvature acts to reduce mixing, and hence suppresses turbulence activity.
In spite of the large adverse pressure gradient (which promotes turbulent
mixing) the turbulence intensities in the outer part of the boundary layer
(y/é > 0.4) are still significantly smaller than the corresponding

values at Station 1 (Figures 57, 58 and 59). Compared with the results

of the constant pressure flow experiment, it can be said that the effcct
of convex curvature is very significant in the outer part of the boundary
layer, and the data seem to indicate that the curvature effect is indepen-
dent of the pressure gradient. This can be seen from a comparison of
Figures 48 and 60. For the constant pressure flow, qE/Ugw ~ .002 at

y/S = .4 and this drops slowly to zero towards the edge of the boundary
layer. For the separating flow q2/U%w ~ 002 at y/& = .5 , and this too
drops to zero in the same manner as in the case of the constant pressure
flow. The fact that q? is approximtely the same for Stations L, 9 and
11 in the outer part of the boundary layer is an indication that the
effect of curvature is far greater than the adverse pressure gradient
effect.

The shear stress distributions for Stations 1, 4, 9, 11 and 12 arc
plotted in Figure 61. Under the action of an adverse rressure gradient,
the point of maximum shear stress moves away from the wall., But, how far
should the maximum point be away from the wall, and how great is the
maximum in the absence of wall curvature cannot be determined, because
of the lack of data for a corresponding plane flow. However, anticipating
the results of the boundary layer calculations outlined in Chapter IV, a
rough estimate can be obtained. The result of such a calculation is shown
in Figure 86. It can be seen that convex curvature acts to rcduce the

maximum reached by the shear stress and prevent the point of maximum from

(|
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moving too far away from the wall. This will be discusscd further in
gcetion 4.6.1. In spite of the adverse pressure gradient, the shear
stress agaln vanishes inside the boundary layer at y/S ~ .5 . This is
another indication that convex curvature in the outer part of the boundary
layer has a much greater effect on the flow than the pressurc gradient.

To provide a cheek for the measured shear stress profiles, the
boundary layer equations (L4.2-15) to (L4.2-17) are numerically integrated
using the measured velocity profiles and the Cf determined from the
Clauser plot. The resultant shear stress profiles at Stations 4, 9 and
11 are then compared with the measured profiles. It was found that the
resultant profiles were quite similar to those calculated by the present
prediction method, and for the sake of clarity they were not shown.

From Figure 86, it can be secn that the measured shear stress is much
lower than the shear stress calculated from the measured velocity profiles.
The discrepancy could be explained by the fact that the flow 1s not quite
two-dimensional, and by errors in measurements (it is pointed out by
Bissonnette (1970) that in regions of very high velocity gradient, the
rotating-wirc method for the measurement of -uv becomes inaccurate).

Much the same discussion about turbulent energy production in the
previous section also applies to the results of this experiment, and
hence will not be repeated. However, it should be pointed out that although
the flow is under the influence of a severe adverse pressure gradient,
there is very little turbulent energy production after y/é ~ 0.5 . Even
in the region near the wall, energy production is severely curtailed by
the effect of convex curvaturc. Since the shear stress measurements are
in error, thcrefore, the energy production calculations are only qualita-

tively correct.

3.3 Constant Pressurc Flow along Concave Wall

The 2z direction traverse at Station 1 serves two purposes. First,

it serves to indicate the kind of disturbances created by the presence of



the travercing device in the tunncl, and sccond, it serves to provide
a basis for comparison with subsequent traverses in the concave test
section. Since the flow in the straight section is shown to be two-
dimensional (seec discussion in Section 2.3.1), the velocity inside the
boundary layer and at a fixed distancce away from the wall should be
constant for all =z plancs. Thercfore, if the traversing device
(Figure 21) is sct up properly inside the tunnel, the hot-wire would
give a straight line on the X-Y plotter for the =z direction traversec
at Station 1. 1Indeed, this was the case, and the result of five different
traverses at y = 0.2, 0.4, 0.6, 0.8 and 1.0 inches from the wall is
shown in Figure 63. This substantiates the previous claim that the flow
1s two-dimensional in the straight section, and that the disturbances
created by the presence of the traversing device do not disturbe the
nature of the flow. However, it does increase the local flow velocity
because of the blockage effect it has on the flow. To estimate the
amount of increase, the traversing device was set at two different positions
at Station 1 such that the hot-wire was 0.2 and 1 inches away from the
wall. The hot-wire was then moved down to the tunnel center line plane
and the mean velocitics at these two y positions were measured. Compar-
isons with the wvelocity profile measured in the same location show that
the velocity increase varies from 1% to less than 5% of the free stream
velocity, and that the increasc is greater in the free stream than near
the wall. The welocity increase 1is due to the relatively large cross-
section of the strut (aerofoil shape with maximum thickness of 1/2 inches
and a chord of 2 1/2 inches) in a tunnel of 6 inches wide. Due to the
peculiar design of this traversing device, it is not possible to make a
quantitative study of the incrcase in vclocity across the boundary layer.
As a result, all traverses obtained in the =z direction can only be
interpreted qualitatively.

The X-Y plotter trace of the =z direction traverses at x = 70

and 96 inches are shown in Figures 64 and 65 respectively. Again, traverses
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were taken at y = 0.2, 0.4, 0.6, 0.8 and 1.0 inches respectively.

All five traces were plotted on the same graph. Compared to the traces
obtained at Station 1 (Figure 63), the results given in Figures 64 and

65 clearly indicate that there is significant velocity variations in

the 2z direction. These velocity variations can be explained by

assuming the existence of a system of longitudinal vortices similar to

the Taylor-Gortler type vortices inside the boundary layer. Then the
positions of the high pointe (crests) in the trace could be taken to
correspond to the positions between two vortices whose flow directions

are dirccted towards the wall, and the positions of the low points (trough)
could be taken to correspond to the positions between two vortices whosc
flow directions are directed away from the wall (see Figure 66). 1In the
positions of the crests, faster moving fluid elements are being entrained
into the boundary layer by the vortices, and as a result of the turbulent
mixing process inside the boundary layer, the mean velocity becomes higher.
On the other hand, in the positions of the troughs, the vortices sweep up
slower moving fluid elements from the wall, and through mixing, the mcan
velocity becomes smaller. Thus, the "wave like" shape of the trace in the
z direction.

The data also show that there are more than one pair of vortices
inside the boundary layer. For the 21 inches traversed in the central
core of the tunnel, there are about 10 pairs of vortices at x = 70 inches
and 7 peirs at x = 96 inches. This indicates that the vortices spread

in the 2z direction and some vortex pairs end at the end walls of the

]

tunncl as the flow moves downstream. The mean half wave length at x 70
inches is approximately 0.57 inches, and it is about 0.9 dinches at x = 96
inches. In addition, it can be inferred that the positions of the crest

and trough are guite stationary, and that they remain at the same 2
position across the boundary layer. These results substantiate Tanits (1962)

findings that a system of Taylor-Gortler type vortices does occur in

turbulent boundary layers over concave surfaces, and that the wave
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amplitude does decrease as the radius of curvature increases.

It should be pointed out that the above data only manage to show
the presence of the vortices up to Y = 1.0 inch. No traverses were made
above y = 1.0 inch at both x = 70 and 96 inches. This is most unfortunate
because the maximum y position is limited by the width of the curved
test section and the relatively large size of the traversing device. The
traversing device is located outside the boundary layer for all the traverses
at x = 70 inches, and partly inside the boundary layer at x = 96 inches.
However, since the hot-wire is 2.75 inches avay from the strut, the
disturbances created by the strut will not be felt at the hot-wire, except
that the flow between the strut and the wall will be slightly accelerated.
This is certainly true at Station 1, and it is assumed to be true also
at x = T0 and 96 inches respectively.

Since the mean output of the hot-wire only gives tle normal com-
ponent of the resultant velocity, and the flow direction inside the
boundary layer is not known, it is not possible to construct a quantitative
diagram of the vortex structure inside the boundary layer from the traces
shown in Figure 64 and 65. As a result, only a qualitative diagram is
given in Figure 66. The appearance of two layers of vortices at x — 96
inches will be explained later. From this simple-minded diagram, the =z
locations of the points of measurements can be determined. For Station 1,
the measurements were taken at tunnel center line, i.e. z = 0 , while
for x =7T0 and 96 inches, measurements were taken at the position of
the crest and trough of the wave system. The reason for this is obvious.
Assuming the presence of the vortex system, there isa minimum of cross
flow at the positions of the crest and trough. Those positions that are
nearest to the tunnel center line and lie above it are chosen to be
the points of measurements, because at these locations, the variation
of the positions of the crest and trough is a minimm across the boundary
layer. The locations of the trough and crest are labelled Stations 2

and 3, b and 5 at x = 70 and 96 inches respectively. The distance
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between Stations 2 and 3 is 0.672 inches and between Stations L and 5

is 1.092 inches. The x and 2z coordinates of the measuring stations
are given in Figurc O.

The velocity profiles reasured at Stations 2, 3, 4 and 5 are plotted
in Figure 67. Since the cross-flow is a minimum at thesc locations the
measurcd velocities are not corrected for cross-flow. Instead W o is
assumed to be zcro at these locations. The measured velocitles are not
corrected for V , which can be significantly greater than the corresponding
flat plate flow. However, the results show that 6/R varies between .07
and .18, and since V/U can be at most of the order of (5 /U)(OU/x),
therefore, the maximum resultant velocity Q ~ 1.018U0 . In this sense,
the measured profiles can be considered as profiles of U .

From the measurcd profiles, it can be seen that the boundary layer
is thicker at the position of the trough than at the positicn of the
crest, and the growth rate at these two positions is approximately the
same. The thicker boundary layer at the trough can be explained as
follows. Concave curvature enhances mixing, so when a fluild particle
is displaced from a position nearer the wall to a positlion further away
from the wall, it will tend to move even further out under the action
of the centrifugal force. At the position of the trough, the particle
is pushed even further out by the vortex motion, and as a rcsult, the
boundary layer becomes thicker. At the position of the crest, the
vortex motion acts in the opposite direction to that of the centrifugal
force, thus the boundary laycr becomes thinner compared to that at the
trough. The results also show that the boundary layer thickness at the
position of the trough is about twice that at the position of the crest.

To find out whether the Iaw of the Wall also holds for flow over
concave surfaces, the velocity profiles are plotted in the Clauscr form.
The values of Upw were obtained by extrapolating the measured profiles
to y =0 . This is because no wall static pressure measurcments were

made at the positions of the crest and trough. A sample plot of the
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velocity profiles at Stations 2 and 3 in the Clauser form is given in
Figurc 68. The plot shows the existenece of a log region near the wall,
but no Clauser lines match the data. The Clauser lines match the data
points in the viscous region. However, this should not be taken as

given the Cf at thcese locations. Therefore, the conclusion can be drawn
that the Iaw of the Wall does not hold for flow along concave surfaces.

As a result, the skin friction at the wall cannot be determined.

Since convex curvature suppresses mixing, therefore, concave curva-
ture should enhance mixing. The result of this would be a significant
increase in the fluctuation wvelocities inside the boundary layer.

Evidence to this fact is given by the turbulence measurements at Stations

1 to 5. The results are shown in Figures 69 to 72. In analysing these
results, one point should be noted, and this is the effect of the adverse
pressure gradient on the flow at the entrance to the curved section.
Bradshaw and Ferriss (1965) showed that in a relaxing boundary layer,

the turbulence intensities decrease as the pressure gradient is removed.
Also, in passing from a zero pressure gradient region into an adverse
pressure gradient region, the turbulence intensities increase significantly.
For the present case, if the ceoncave curvature has no cffect on the flow,
then the turbulence intensitics should increase from x = 24 inches to x =

7O inches and decrease significantly from x = TO inches to x = 96

2
bw

near the wall from x = 7O inches to 96 inches, but remains relatively

inches. The distribution of ug/U does show a decrease in the region
constant in the outer part of the boundary layer (Figures 69). This is
consistent with the findings of the convex wall, i.e. wall curvaturec has
very little effect in the region near the wall. Howvever, the same trend
is not noted in the distribution of —vE/Ugw and ?Q;w (Figures 70 and
71). There is no discernable decreasc in v and w2 distribution
across the boundary layer from x = 70 to 96 inches.

According to the Ve component of the turbulence cnergy equation

(E-2), concave curvaturc promotes ve production, and this is evident
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2
from the distribution of VL/UPV
;

(Figure T0). However, not all of
the ircronse over thoat roccured at Station 1 is due to the influence
of concave curvature. Part of the increase 1s due to the adversco

'

pressure gradient effect at the entrance to the curved scction, and

part of tre incrcasce 1s due to the effect of the vortex system. At
Stations € and )i, the vortices have a resultant motion in the yso

planc dirccted away from the wall. This contributes further to the
outward radial movement of the fluid particles. At Stations 3 and 5,
the vorticcs have a resultant motion in the yz plane directed towards
the wall, thus any radial movement of fiuild particles outward would

be hindercd by the vortices. As a result, the ;E at Stations 2 and k
arc greater than at Stations 3 and 5 respectively. This is particularly
true at x = 96 inches. The reason is that there may be morc than onc
layer of vortices at x = 96 inches. This point will be discussed again
later. The same is truc of the w2/U%w distribution (Figure 71). 1In

other words, the system of longitudinal vortices contribute to the

production of ve and we fluctuations, but not u2 . This is evident

from the fact that necar the wall, ul drops from x = 70 to 96 inches,
but not 2 and ;E . As a result of this, the distribution of turbu-
lence encrgy q2/U§w docs not change significantly from x = 70 to 96
inches (Figure 72). Note that the turbulence energy distribution is
greater at Stations 2 and 4 than at Stations 3 and 5. This is especilally
true at x = 96 inches

The shear stress profiles at x = TO inches are given in Figure 73,
while those at x = 96 inches are shown in Figure Th. The shear stress
profile at Station 1 is also chown for purpose of comparison. The fact
that the shear stress profiles at x = 7O inches show a maximum is due
to the adversce prescurc gradient effect at the entrance to the curved
section. The maxirmum remains cven at x = 96 inches. This indicates
the influcrnce concave curvature has on the mixing process. However,
the shear stives profiles at x = 96 inches show two points of maxirum.

61



This could be due to the fact that there is more than one layer of
longitudinal vortices at x = 96 inches. Turbulence intensity measure-
ments also secm to lend evidence to such a postulate. However, the
strongest cvidence comes from the profiles of v and w at x = 70
and 96 inches (Figures 75 and T6). Measurements of 1w and W at
Stations 2 and 3 show that there is only one maximum (Figure T6), while
the measurements at Stations 4 and 5 distinctly show two maximum points
for both uw and Vw . It can be postulated that at x = 70 inches,
there is only one layer of longitudinal vortices, while at x = 96 inches,
there are two layers. This is depicted in Figure 66. Also shown are
the velocity traverse at a constant distance away from the wall and

the boundary layer thickness distribution in the 2z direction. Of
course, within each bigger vortex, there are smaller vortices, but these
are not shown.

From previous discussion, the directions of rotation of the vortices
at x = TO inches can be postulated to be as shown in Figure 66. Based
on the same evidence, the directions of rotation of the first layer of
vortices (the layer nearer to the wall) at x = 96 inches are assumed to
be the same as that at x = 70 inches. The directions of rotation of
the second layer of vortices can be postulated after an examination of
Figures 75 and T6. At Station 2, the distribution of uw is positive
across the boundary layer, while that of WW 1is negative (Figure T75).
At Station 4, the distribution of TW is also positive across the
whole boundary layer, while that of Vvw is also negative (Figure T76).
This seems to indicate that the second layer of longitudinal vortices
would alsc have the same direction of rotation as the first Ilayer.

At station 3 , the uw distribution is negative , and the W
distribution is positive. The same is true at Staticn 5 . This

again lends evidence to support the postulate that the directions of
rotation of the second layer of vortices at x = 96 inches are the same

as the first layer. The fact that there are two layers of vortices at
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x = 40 dnches is very clear from Figure 70. However, the vortex structurce
at % = 96 Inches is not stable. Therefore, further downstream, it may
revert back Lo that o a single layer structure.

Thce distributiwic of Uv and vw at Stations b and 5 all show
the existence of two waves with the waves going to zero at the wall, at
y/b :_.6 and at the cdge of the boundary layer. Based on all these
evidences, the resultant vortex structure as shown in Figure 66 is
postulated for the boundary layer flow at x = 70 and 96 inches
respectively.

Finally the shear corrclation coefficient and the turbulent energy
production arc calculated and plotted in Figurcs 77 and 78. S expected,
the shear correlation coefficient does not remzin constant across the
boundary layer. This is due to the effect of the longitudinal concave
curvature which gives risc to the Taylor-Cortler type vortices. As to
the pcculiar behaviour of the turbulent energy production at x = 96
inches, this is probably duc to the peculiar velocity profiles at Stations

4 and 5.



Chapter IV
THEORETICAT, FREDICTICHS OF
CURVED TURBULENT BOUNDARY LAYFRS

4.1  Introduction

The ultimate goal in boundary layer research 1s the understanding
of the physics of such flow and at the same time to be able to develope
a procedure for predicting, both quantitatively and easily, the practical
features (c.g. H, Cf , and the shear stress) of boundary layers. 1In
the past, investigators have been quite successful in the development
of prediction methods for two-dimensional boundary layers. In these
calculation methods, be they based on integral or differential equations,
it has been assumed that the static pressure variation across the layer,
due to either rapid boundary layer growth, flow injection at the surface,
or surface curvature (when |5/RI << 1) has very little effect on the
flow and hence can be neglected. Such an assumption neglects the effects
of the curvature of the mean flow streamlines. These effects are shown
to have a considerable influence on the mixing process in the flow.
Convex curvaturc in the mean flow streamlines reduces the mixing between
the fluid layers and this leads to an early cut off of the shear stress
(see Fig. 59). In contrast, concave curvature enhances the mixing pro-
cess, and the shcar stress profile remains quite full until the edge of
the boundary layer wherc it drops to zero stecply (sece Figs. 73 and Th).

Thompson (1963) was the first author to point out the importance
of incorporating a curvature parameter in calculation rethods. In a
eritical review of existing two-dimensional calculation methods, he found
that the small curvature that existed on most of the test surface where
measurements were made, was not large enough to cause substantial
difference between the measured velocity profiles and that calculated
assuming the flow to be two-dimensional plane flow. However, there was

a consistent diffcrence between the measured and calculated shape factor



development in the stremmilsc dircetion. A well-known case was the
measurem-nts on an aecrofoil by Schubaucr and Klebanoff (1951). 1In
their measurements, the curvalure parameter 6/R , as defined by
Thompson, was -~ 1/150 downstream of tle pressurc minimim. Most pre-
dictions methods rave fairly good correlation for the velocity profiles
and the momentum thickness, but all predicted the shape factor too low.
Thompson argued that the effect of curvature was on the entrainment
process. He modificd Head's entraimsent function by the inclusion of
an empirical factor which was assumed to be a simple function of
the curvature parameler 6/R . This improved the agreercnt between the
experimentally measured H and that predicted by his calculation
method. Although the method used by Thompson was not very satisfactory,
his results brought to light the very important conclusicn, namely that
the primary influence of the streamline curvature was on the mechanism
of the turbulent motion and thc entrainment of free stream fluid into
the layer. Thercfore, any attempt to extend existing two-dimensional
calculation methods to include curvature effects should be directed to
the modification of some parameter, e.g. Head's entrainment function
or eddy viscosity, that will take the physics of the flow into account.
More recently, Bradshaw (1968) has drawn the analogy between the
Richardson Number, which is a metcorological parameter, and a curved
flow parameter "L" which describes the effect of streamline curvature on
turbulent flow. Using this analogy to apply meteorological data to curved
turbulent flows, Bradshaw showed that the apparent mixing length was
affected appreciably even though 6/R ~ 1/300 .  Incorporating this
modified mixing length into the Bradshaw, Ferris and Atwell calculation

*

method, Bradshaw managed to obtain better agrecment between H , 5 and

Cf as measured by Schubauer and Klebanoff (1951) and that predicted by
his calculations. Again, this points to the need to modify the eddy
viscosity or mixing length function, such that the resultant form will

be general cnough to predict both curve and plane turbulent flows



accurately.

Hence, the object of the precent chapter is to seek a set of self
consistent turbulent boundary layer equations for flows along curved
surfaces, and the corresponding momentum integral. This is done in
Section 2 and Appendix D.

In Section 3 a modified eddy viscosity function which consists of
the product of the flat plate eddy viscosity and a factor that is a
simple function of the curvature parameter is derived. This modified
eddy viscosity approaches the eddy viscosity function put forward by
Mellor and Gibson (1966) as the surface curvature becomes zero. A
technique similar to that proposed by Mellor and Herring (1970) is
adopted for the derivation of the modified eddy viscosity function.

Assumptions are made to cimplify the turbulence energy equations of ,

e 2 2 —
u |, V2 , w2 and uv for curved turbulent flows (for derivation of

these equations see Appendix E) so that all terms in these equations,
including the pressure-velocity correlations and the triple velocity
correlations terms, can be expressed in terms of the double velocity
correlations. These equations are further simplified by assuming the
advection and diffusion terms to be small compared to the dissipation
and production terms, and hence can be neglected. This is equivalent
to assuming that energy production balances dissipation and that a state
of equilibrium is reached as far as the energy distribution is concerncd.
This is a plausible assumption because existing flat plate (Klebanoff 1955)
and pipe flow (Laufer 1954) data do indicate such a state of equilibrium
for the flow near the wall. The resultant equations are algebraic and
can easily be solved for the shear stress.

In relating the various terms in the turbulence energy equations
to ﬁ;ﬁ; ; four length scales are intrcduced as proportionality constants.
Therefore, in order that the shear stress be specifiied completely by
mean flow quantitics only, empirical statements for these length scales

should be derived. Mellor and Herring (1G70) have shown that the four
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length scales are not truly independent and from experimental correlation
two rclations can be found for the four length scales. This leaves

two length scales to be specified. If the eddy viscosity funetion for
curved turbulent flow as derived in Section 3 is truly a general one,
then the length scales appoaring in the expression should be independent
of curvature ond pressure gradient. Henee, 1t is sufficient to obtain
empirical statcments for the length scales by only considering the planc
flow turbulence encrgy ecguation and the Taw of the Wall. This is donc

in Scection k.

The boundary layer equations together with the eddy viscosity
function are then solved using a finite difference method adopted by
Herring and Mellor (1970). Reduction of the set of ecquations to an
ordinary differential cquation is given in Section 5. The calculations
are then comparcd with the measurements on both the convex and concave
surfaces. PFinally, a brief discussion of the calculation mecthod and

the comparisons are given in Section 6.

.2 Boundary Iaycr Equations for Curved Flow and the Momentum Integral

The Navier-Stokes equations for a constant density incompressible
Y Y

flow can be wrilten as:

v.q = O (h.2-1)
oq - - 1 2_ )
3z t Ave = -5Ve o+ wa (4.2-2)

Congsider a flow over a twe dimensional curved surface. Use general
orthogenal coordinates with x  measurcd along the surface, y normal
to the surface and 2z at right angles to the x-y plane which is the
planc of the motion. If k(x) = 1/g(x) is the curvature of the surface,
(kx 1is taken to be positive for convex curvature, and negative for con-
cave curvature) the elements of length along the parallel curves and along

the normal are hl = 1+ ky and h2 = 1 . The clement of length along
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the 2z direction is h3 =1 . Taking uw , v, and w to be the
velocity components along the x , y and 2z directions respectively,
and working out the componcnts of the vector equation of motion (see

Owczarck 1964), the following equations for u , v and w are obtained:

ou + = u ou v ou + W ou + uv
3t 1+ky  Ox oy dz 1+ky
! 3p . 1 BTXX . aTxy X BTXZ
T 7 14ky Ox 1+ky Ox dy dz
ok ,
1+ky Txy (k.2-3)
ov + L u ov + v ov s v X . k u2
ot 1+ky =~ Ox oy oz 1+ky
. ap . 1 BTxy . AT ) aTyz
oy 1+ky Ox oy 3z
k
1+ky (Txx B Tyy) (h.2-k)
o 1w . dw , ¥
ot 1+ky = Ox dy dz dz
+ 1 asz. + aTyz + aTzz N k D
1+ky ox oy dz 1+ky “yz (k.2-5)
where
1 du k
T = 2V(J_+ky 3x T 1+ky v)
v
= Dy =—
‘I‘y_y v 5y
dw
Tzz = dz
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arc Lho viccous normal strosocs and

) u 1 Jv
T o= v {1 xy) = () T S
2 gy _].‘n(_y .1.'*‘1;1,‘ X
- -
AV ov
T =V AS + \-}
Y2 63 oy
0 £511 ) 1 8\4}
= v ——— -1 - ———
X7 Ry T+ky ox

are Lhe ohearing strecoou, Tt chould be pointed out that the pressurce

p and the stresses T, . have the dimension of velocity square in these
LJ
equations. The continuity cqualtlion can be vritien

c/

u J
— ,1,.

% 0

{((1Hhy)v) + 5% {(1+y)w} = O (k.2-6)

o/

v

A

Consider a turbulent flow that is two dimensional in the mean.
Therefore, the mean flow in the 2 dircction is zero, and all Sz of
Z
mean flow quantitics vanish. The ficld equations of motion for such a

flow when decomposed into engemble mean velocitics U , V. plus fluctuating

velocities u , v , w and their concomitont pressure P and p arc:

au 0 ~
ax + ay [(l+l‘y>v] =0 ()4'2-7)
u , 1 ,oU, LU, Kk B G - B
ot 1+ky ~ Ox dy  l+ky T 7 laky ox 1+ky Ox Y Tk
+ S (-uv + T__) + (-av + T__) (4.2-8)
Ay xy 1+ky Xy :
3v 1 . dv ¥ k.2 9 1 8 — 3, 2
St T Ty Usx v oy l+ky T dy i 1+hy Ox (-uv + Txy) * Sgi_v +Tyy)
< [(-~2_+T )-(-_2—+T ) (k.2-9)
1+ky v XX M vy ) e
du O 0 _
i 5y ((Ltky)v} + 52 ((1+ky)w} = 0O (4.2-10)

N



dou 1 ) o P d .
a—q;-Jrld-kijx(quJru 'u)+ay(VU+uV+uv-uv)
+ 9 (WU + uw ~ uw) + 2k (VU + uv + )
CE T+ky uv - uv
1 ap 1 aTx_x aTXy D% aTXZ
= - = 4 N +- + T + (’4.2-11)
1+ky ox  1+ky ox Sy T+ky “xy * 52
ov 1 3 __ y > )
at+l+kyax(vU+uV+uv'uv)+ay(2VV+v —V)
3 — , 2 2 22
by (WwV + v - W) - P (2uU-2vyHu v u oty
o1 ot St
_ 0p 1 Xy vy k vz
T Ty Sx T8y T Ty U T Ty T 53 (4.2-12)
ow 1 — d _
STt Trhy 5% (wU + uv - W) +By (wV + v - W)
) 2 7. k . dp
+5Z(w -w)+l+ky(‘l'V+W'W)—"aZ
ot ot S5t
1 Xz yz k 77,
+ .2-
¥ 1+ky ox Sy l1+ky 'yz | Oz (4.2-13)

The Tij are the fluctuating viscous stresses given by the same

expressions as Tij except that all velocities in Ti,j are now replaced

by the fluctuating velocities.

the

The only component of vorticity that is non-zero is that normal to
X-y Dplane and is given by:
1 9oV _au k

C T Tagox TSy T T Y (h-2-14)




With the ficld equations of motions given by ccouaticns (L.2-7) to
(k.2-9) and the vorticity defined by equation (L4.2-14), the next step
is to simplify these equations to obtain a sct of self-consistent boundary
layer cquations for a turbulent flow that is two-dimensional in th» niean
along a curved surface. The assumptlons to be made are that the boundary
layer thickness » is very small compared to the x  dimension and the
radius of curvaturc R of the surface is of the same order as the x
dimension. Thercfore, 6/R is very much smaller than 1 . The geometry
of the surface is specified by R(x). The function R(x) has to be
smooth but othcrwise it can be a general one.

Recently, Mellor (1970) has demonstrated that the method of matched
asymptotic expansion can also be applied to turbulent boundary layers.
Two small parameters, ¢= ut/Uo and 626 = v/UOz s (where u, is any
characteristic turbulent velocity, U, 1s any characteristic free stream
velocity and £ is a characteristic length) appear as a result of
making the equations non-dimensional with respect to ut B U0 and ¢
However, Mellor (1970) has shown that expansion in one parameter, ¢ , is
sulfficient and that (é/cn)'v 0 as € - 0 for arbitrary n . Unlike
the case of laminar boundary layers, three layers exist, (an outer
layer, a middle laycr and an inner layer) due to the presence of the
two small parameters. Also, the Iaw of the Wall is shown to be a con-
sequence of the matching between the inner and the middle layers. 1In
view of this, the set of boundary layer equations for a curved flow is
obtained through the mecthod of matched asymptotic expansion instead of
through dimensional argument. This 1s carried out in Appendix D for
equations (4.2-7) to (4.2-9) and equation (h.2-1h). The resultant
set of equations in dimensional form is given by equations (D-22) to

(D-25) and equation (D-26), which is

—— + =+ kV =0 (4.2-15)
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AU U

—;+V5-)—’+kUV:-%2—£'+§;(%)+2kg‘ (k.2-16)
X Up2 _ %-%§ (k.2-17)
c--E o (4.2-18)
Loy, (gg-- k) (4.2-29)

where Up is the potential velocity which is, as yet, undefined.

The inner boundary condition is given by the no slip condition.
The outer boundary condition can be defined so that the velocity
approaches the free stream velocity as y —» & . The free stream velocity
is obtaincd from the Bernoulli equation and the condition of zero
vorticity. This immediately gilves the free stream velocity distribution
as:

- -ky
U (xy) = U (x)e (4.2-20)

where Up(x,y) is the potential velocity and Upw(x) is the potential
velocity at the surface.

It should be noted that, inserting (4.2-20) into (4.2-19) shows
that T/p does not vanish as y = « 1if ve is maintained constant.
On the other hand, the terms g%(%) + 2k %-~ 0O as y > o . This
circumstance is identical to that obtained in laminar flow. This is
pointed out because, later on, an eddy viscosity model where ve does
stay constant for large y dis assumed. This is, of course, not
particularly realistic but it is known that predicted velocity profiles
are insensitive to the detailed behavior of Ve at large y .

Equation (4.2-17) must be used together with the other approximations
of the boundary layer equations (see Appendix D). If % §§ =k U2 is

used instead, the pressure term will not balance the advective terms

in equation (4.2-16) when it is integrated over the whole layer. Thus,
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integrating cquation (4.2-17) and then differentiate the resuliant

expression with respect to X

-2ky

it can be shown that

10P 1 Q 2
pox  “ox (Upw ¢ J (h.2-21)
gubstitute = o=  into equation (4.2-16) and then integrate from O to

P ox

Y-

« , the momentun integral, thus obtained, can be written as follows:

au
dao 0 PV dk o U
1 - = Loy 2 E == -
z C dx+(1{+¢)U = dxfoy(l U)dy
v Y
(4.2-22)
ak U U
- Dy -
R N Al Gl
P P
where Cf s O and @ are defined as:
T
c, - T (4.2-23)
sp U
* U
5 = [ (1-7)dy (4.2-24)
¢] u_
P
o U U
o= [ —(1--)d (4.2-25)
oU U
» D

*
The integration is somcwhat complicated.
the shear stress terms in equation (h.2-

then cct U = o8 u(x,y) where

Solving the continuity equation gives

Ju

16) as

-Ky dk
— - == dv =
V=oe [-J vy o+ fo y u dy]

o Ox%

Tt is helpful to first rewrite
ol e-2ky B(ezkyr)ﬁiy and
k = k(x) and u ~ Upy as

Yoo .

gubstituting the above U, V terms and equation (4.2-21) into equation
(4.2-16) the integration may be performed and the result cleared of
exponential functions. Finally, noting that u = Upgy (U/Up), the
result can be written in the form of cquation (L.2-22).



Note that the two integrals in equation (14.2-22) are finite since U/Up -1
at the edge of the boundary layer., If %-g§ = kUe had been used instead
of equation (h.2-17), a term would be introduced which would blow up
as the limil of integration avyroached Infinity.

The sct of equations (4.2-15), (L4.2-16), (4.2-17) and (4.2-18)
together with the eddy viscosity ve to be derived in Section 3 form

a closed set, and can be solvced when the appropriate initial and boundary

conditions arc specificd. The boundary conditions are given by:
U(x,0) = W(x,0) =0 (k.2-26)

at the wall, and

_ky

U(x,y) = Up(x;y) =U_(x)e (Lk.2-27)

jois

at the edge of the boundary layer. To solve this set of equations, the
method of Herring and Mellor (1970) is uscd. The reduction of these

equations to a singlc ordinary differential equation is given in Section 5.

4.3 The Eddy Viscosity Hypothosis

As pointed out by Mellor and Herring, an expression for the shear
stress (-uv) can bc obtained Crom the turbulence cnergy equations when
further assumptions arc made to simplify the equations to a set of algebraic
equations. Invoking the assumptions that in the region necar a wall, the
advection and diffusion of turbulecnce cnergy are very much sraller than
the production and discapation of turbulcnce cnergy, lhe advection and
diffusion terms in equations (E-14) to (E-17), as derived in Appendix E,

can be neglceted. The result. is

l1q ,2 1 2 2aq UL

75 (W -Zag)+s= +2WW—=12tTU=0 (h.3-1)
344 3 3A SN

! (;E -2 q2) . 2 EB -Lcuvu =0 (Lk.3-2)
3£y 3 3 A



14 2 _ 1 2 24a _

3Ml(w 3a)*t3y =0 (4.3-3)
1qg ,— . 23U 2 2

gzl (uv) + v 5;—}{(211 -v )Ju=0 (Lk.3-k)

where A and £, are length scale as defined in equation (E-6) and (E-T)
respectively.

The equations are correct to order & because of the inclusion of
the curvature terms. Since the objective of the present Section is to
find an eddy viscosity function that includes curvature, this purposec
will not be served if the curvature terms in the “‘urbulence energy
equations are excluded.

Omitting all the algebra, the result of solving equations (4.3-1)

to (4.3-k) for (-uv) is

o133/ Sasef T2(£, /1)
(1 XUy KU 3/ (4.3-5)
ULy’ dULY W 2302

kU )2 (1 - BU}gy) (S§
oU oy

(1 -

It should be noted that in deriving this expression for (-uv), isotropy

is not assumed. If isotropy 1s assumed, the same expression will still

; 3/2
be obtained, except that the factor (1 - 621/A) becomes 1 . 1In

this case, when curvaturc is assumed zero, the expression.

1/3 3/2

(-av) = (20 )

U
oy

3U
oy

is obtaincd. Immcdiately, it can be recognized that the eddy viscosity

1/3,3/2 3 .
can be identified with the expression (44 /3) S% . Similarly, one
1/3,3/2 2 e
can identify (BlA /3) (1 - 6£/A)3/ g% as the eddy viscosity in a
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plane flow when isotropy is not assumed. Denoling the latter expression

by veF and after some rearrangement, cquation (L.3-5) can be written

3/2
(S—Ut + kKU )kU
(-ﬁ):veF 1-B gu 5
Sy ~ ) (4.3-6)
kU AU
1 - a_’_u/ay (ay - kU)
where
72(£, /)

B = T 6(21/n)

The shear stress is given by equation (L4.2-19)

where Ve is the eddy viscosity. Comparing equation (L4.3-6) with

equation (4.2-19) v, can be written
3/2
KU(QU /By + kU) Ky
v = v 1-8 > 1 -
Qupy - ku) dU/dy

(4.3-7)

This then is the desired eddy viscosity function. Note that for
convex curvature k 1is positive, and the modifying factor within the
curly brackets is always smaller than 1 , except at the wall. Hence,
the physics of convexly curved flow, which in simple terms can be
characterized by the decreased mixing, is embedded in the eddy viscosity
function. For flow over concave surfaccs, the present investigation has
demonstrated that a system of longitudinal vortices exists inside the
boundary layer. As a result, the flow is no longer two-dimensional,

and the present approach to characterize the flow by a scalar eddy
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viscosity function is in doubt. However, the eddy viscosity function
as given in equation (%.3-7) affords the practical enginecr a simple
approach tc estimate, though approximately, the various features of

the turbulcnt boundary laycr on a concave surface. This would involve
some kind of assumptions about the flow or the prediction method (This
will be discussed in detail in Section L.2-6). For the present, it is
enough just to point out the limitation of the eddy viscosity function.
Now, it remains to define p which involves the ratio (zl/A), and this

is given in the next section.

4.4 Determination of (zl/A)

The eddy viscosity for a turbulent flow along any smooth curved
surface is completely defined by equation (4.3-5). Theoretically, v,
can be computed once the variation of 21 and A across the boundary
layer is known. This requires emperical statements for zl and A very
near the wall, which at present cannot be obtained with certainty due to
the lack of reliable turbulence data in this region. Since the present
objective is to find a modifying function that includes curvature for
the flat plate eddy viscosity, it suffices to identify

3/2 £, 3/2

= (zlAl/3) (1 -6 —A—)

oU

oy

VeF

with the eddy viscosity hypothesis put forward by Mellor and Gibson (1966).
Therefore, only the ratio (zl/A) remains to be determined in the expression
for Ve

From the emperical statements of zl and A given by Mellor and
Herring (1970), it can Dbe scen that (zl/A) is practically constant in the
overlap and defect regions of the boundary layer. Due to the fact that
the flow near the wall is predominantly viscous in nature, the curvature,
according to Van Dyke (1962}, is a second order effect in this region.

Hence, it is sufficient only to determine the ratio (zl/A) in the outer

7



part of the boundary layer, and this can be obtained, most convenilently,
by considering the Law of the Wall region only.
Near the wall, Mellor and Herring (1970) assunre that

£, = fn(y, q, v)
or
21q ay
—_ = ¢ — A
v Al (x) 5 x v
Similarly
Aq
e ¢A(X)

As yet, the functions ¢£l(x) and ¢A(X) are undefined. For the Iaw
of the Wall region, it is further assumed that these functions can be

approximated by a power law namely

£ n
_i_ - A(%X) (%.h-1)
M. B(%Y)m (b.4-2)

where A and B are constants and n and m are integers to be
determined.

The eddy viscosity function should be applicable to both curved
and plane flows with arbitrary pressure distribution. Therefore, it is
necessary only to determine gl and A for the flow along a flat plate.
The turbulence energy equations for 55 » ;E P ;E and uv , neglecting

the diffusion and adveection terms are:

3
19 P.1P .29, ,m_ -
IR L PRSI R (4.4-3)
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1 71 2 g3

5%1 (vd_§q2)+-3-/% = 0 (b.h-b)
La (Zotgy .20 (bhe5)
2, 3 3 A

1a = ., ;Ehég = 0 (L.4-6)
3£y oy

In this region, the Iaw of the Wall also hold and

AU U
oL _ _T b 4o
dy Ky (h.4-7)
Tw
where u, = ey is the friction velocity and « 4is the von Karman

constant. Making the velocities non~-dimensional with respect to u
T
and with the substitution of equations (4.b-1), (L.4-2) ana (h.h-7),

equations (4.4-3) to (4.4-6) can be written as

- 2 - 2u -m +h
Ut qu n q+ +2 1 40 T 4
A -390) 5 () y
(4.2-8)
- 6(-uv') L 0
Ky
- - ¢ - 4
Soay gt T3 JLogrey, ey, gt -
A (v ) v (v 3 ) B ( v) v © (h-4-9)
-n 42 2u m +h
1
ur (%L (w2 - q+2) T €25 T S (k.4-10)
A v v 3 B v v
- uT qy -n q+2 —_— _-‘;2 l h
— (=) 22— (- = = 11
2 5 S s = -0 (h.k-11)

where



2 2 2
—4+2 U +2 v +2 W
- o ) - 2 ) - o)
u’[ u"f u’fc
2 —_
+2 q —F uv
=7z, w = 5
u’t uT

+
Tt is furlher assumed that the shear stress is constant, 1.c. (-uv ) =1,

in the Iaw of the Wall region, and the function ¢p4 and @A are universal,
hence, v@El and v¢, arc independent of viscosity. This nccessary
implies that n =m =1 . With these simplifications, equations (L.L-8)

to (4.4-11) reduce to:

Bq" (u* - % q*?) + 2nq*3 - 6 AT?- =0 (b.4-12)

p(v' - %— a*?) + 2ag*? = 0 (4 .4-13)

B(v'e - %—-q+2) v 280" =0 (b.h-1k)
. A'?z

-t () + -0 (4.4-15)

Solving these equations give:

2A -v—+2 + ;;2 1

_2a vy +w L (4.4-16)
B 2q+2 3

B = Kq+3 (4.54-17)

G eads (1 -6 %)3 (4.4-18)

A value of 21/A which gives the best agreement in Cf betwecn the
calculated values and the measured values for the case of constant pressure
flow along convex wall is chosen and used for calculations of the other

two cases. However, whatever value one chooses for £1/A , it should
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satisfy equabicn (4.4-18), so that the von Karman constant can always

be recouvered.

L5 Reducticn of the Set of Bonndary layer Bauations to on Ordinary

Differentini bguation

The set of cquutions (h.2-15), (4.2-16), (4.2-17) end (h.2-18)
togethor with boundary conditions (4.2-26) and (4.2-27) can be reduced
to an ordinary differcntial equation through the following substitutions.

Following Herring and Mellor (1970), assume

u -U
of _ . . »_
an - T (X)ﬂ) - U (u's'l)
p
vherc
T‘l =

S
& ¥

Differentiate equation (4.5-1) with respect to x and y and integrate

the continuity eguation (14.2-15) to obtain V , it can be shown that

t

aU _gaT‘l 1 1 2 2 1 af
U 3= 7€ [Upwupw (1-) - Upw (1-£7) 3
2 ' 5
* *
» B (e’ -a's )n(1-r) (h.5-2)
o]
1
2 6* !
+ U - 1 -1 ]
i ¥ ( m
U2 !
AU _an t " v ¥ , *
4 ky) = u_uU SO)E o+ - x
RO TN U MRS LIRS R
5 (4.5-3)
2 " U5
CPRUINCIPEL VT RN
(5 -af+ o) -U T S+ e (nf -£)f ]

* n *
where a = k5 and G = jo fan . The primes in a , & and Upw refer
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to ordinary differentiation with respect to x .
The pressure term can be obtained by differentiating the integral

of equation (4.2-17). The result is:

2
10p _ -2en v, ek
T p ox © [UPWUPW * 5* (a& -ad )ﬂ] (M.S—h)

Bearing in mind that 1 + ky is taken to be 1 only whenever
it appears as a coefficient and noting that Ve is a function of 1 ,

the shear stress terms can be written as
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Substitute equations (4.5-2) to (L4.5-5) into equation (4.2-16)

and after some rearrangement, the following equation for f is obtained,

namely:
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This equation (4.5-6) can be further reduced to an ordinary differential
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cquation through the use of the identities
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for the differcential with respect to x .

The resultant equation as function at Xi can be written as
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The overbar denotes average valuce and the Ci's arc all calculated from
the previous itcration. Rearranging the cquation further, the final

equation to be sclved can be written as:

1 1t 1
(b5f )i =Dy + b3fi + b0+ blfi (4.5-9)
and
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3 (1.5-10)
by, = C, - C,
b, = -C,

The boundary conditions at the wall are:

£ (x,0) =

=1
(4.5-11)
f(x,0) =0
and the free stream boundary condition is
Lim ! R
N = e f(x,m) =0 (4.5-12)

The unknown function b_ is given by equation (4.3-6). 1In terms of f ,

p)

it can be written as
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where ¢_ = is the flat plate eddy viscosity function.

Up, o
The equations (4.5-9) and (k.5-13) together with boundary conditions
(4.5-11) anad (4.5-12) arc solved using as initial conditions the measured
data at Station 1 of the three experimental cases, namely: (1) constant
pressure Tlow along convex wall, (2) separating flow along convex wall
and (3) constant pressurc flow along concave wall. The results are then
comparced with the present data. A discussion of this comparison is

given in the next section.

L.6  Comparison with Present Data

The boundary layer program of Herring and Mellor (1968) is used to
numerically integrate the ordinary differential equation (4.5-9) with
the set of boundary conditions (4.5-11) and (4.5-12). The program uses
a fourth order Runge-Kutta technique for the numerical integration.
Although such a technique works well for all types of boundary layer
development on a flat surface, it fails to give a solution that converges
to the required accuracy on both f and £' when the surface 1s curved.
The difficulties occur at the point where curvature begins, and in part
is due to the fact that the shear stress vanishes at about half the
boundary layer thickness at this point. In order to overcome this short-
coming, another integration technique is used. The method is discussed
in Richmeyer and Morton (1964). Essentially, it reduces the ordinary
differential equation to a set of algebraic equations and these are
then solved for f' simultaneously with the boundary conditions.

Instead of shooting out from the wall, the method proceeds inward, thus
eliminating completely the initial guess on f"(x,O) which is required
in the case of the Runge-Kutta technique. The shear stress is then
obtainecd by differentiating r numerically. The whole calculation is
repeated until f and f' converge to the reguired accuracy.

Initially, zl/A = .0136 (obtained by setting qb = 3) is used.

However, this gives a C that is too high compared to the data of constant

t
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pressure flow along convex wall. Various values of (El/A) are tried until
one (zl/A) is found such that the calewlated C, and the measured C,
for the case of constant pressure flow along convex wall correlate with
each other. Such a value of (ﬂl/A) is found to be .O41T and this is

used for the boundary layer predictions of the other two cases.

4.,6.1 Turbulent Boundary Layers along Convex Surfaces

The results for the case of constant pressure flow are given in
Figures 79 to 81. The agreement among the various integral parameters
9,6* and H are very good (Figure 79). 1In order to show more
explicitily the curvature effect, two more calculations are made. One
is without curvature, i.e. RO -+ w , while the curvature for the second
calculation is halved, i.e. Ro = 20 inches. For both calculations,
the same initial condition and the same distribution of potential
velocity at the wall are used. It can be seen that the result of convex
curvature is to reduce g and increase 5* , hence H is very much
different from the corresponding flow along a flat plate. The calculation
with no curvature shows that H = 1.35 when the flow is in equilibrium
again after passing through the favorable pressure gradient. However,
with the designed curvature (RO = 10 inches) H still keeps on
increasing and this is an indication that the flow is not in equilibrium
even at x = 75 inches. On the other hand, with the curvature halved, H
approaches a constant at x = 75 inches. The prediction of Cf is
of course excellent, since zl/A is chosen so that the calculated and
measured Cf matched each other at x = Tl inches, i.e. Station 11.

For the corresponding flat plate flow, Cf is about 13% higher than the
measured Cf . This strongly indicates that turbulent flows along
convex surface cannot support as high an adverse pressure gradient as
the same flow over a flat surface. This fact will again be borne out
in the separating flow case. Calculated velocity profiles at Stations

2, T, 9 and 11 are shown in Figure 80 together with the measured profiles.
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In general, agrcement is good, and the present method predicts the
veloclty profile quite well even at Station 2 which locates downstroan
of the strong favourable pressure gradient. TFor purpose of elarity,
the velocity profiles from the other two calculations are not shown.

The present mothod also predicts the shear stress profile very
well (Figure 81), especially the point where the shear stress vanishes.
Near the wall, the agreement is off, but in this region, the measurements
arc in error because the rotating-wire method is not accurate in regiocn
of high shear as pointed out in Appendix D. Aside from this region
which is about one displacement thickness, the agreement is very good.
At Station 7, the shear strecss profiles of the zero wall curvature
(Ro - ), and half wall curvature (RO = 20 in.) are also shown. This
shows clearly the effect of convex curvature in "cutting of £" turbulence.
With no curvature, the shear stress vanishes at the edge of the boundary
layer (n ~ 11), with R, = 20 dinches, the shear stress vanishes at
M~ 5 , while with RO = 10 inches (the designed curvature), the shear
stress vanishes at n ~ 4k . Hence it can be seen that even if the
surface has a very small curvature, the point of zero shear will be
somevhere inside the boundary layer (the boundary layer is assumed to
have been established previously).

In the calculation of the separating flow case, instead of using
the measured distribution of potential velocity at the wall all the way
up to x = 75 inches, the extrapolated velocity distribution from x = 62.5
inches to x = 75 inches 1s used (I'igure 82). This gives a linear
decelerating potential velocity distribution at the wall, and this is
the desired velocity distribution to be set on the convex surface (see
Section 2.3.2). The results are shown in Figures 83 to 86. As in the
case ol constant pressure flow, two more calculations (one with Ro - o
and the other with RO = 20 in.) are made for the sake of rarametric
study of the curvature cffect. The calculated and measured ¢ and 6*

are given in Figure 83. Under the infTlucncc of adverse Pressurc gradicnt,
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the differences in the development of 6 is unnoticeablc. The 0
development for the case of RO = 20 inches is practically the same
as that of RO-* w , hence not shown on the graph. However, the
differences in 6* are discernable, especially near separation.
Although the location of the point of separation is not known,
it can be said with confidence that the flow separates somewhere
between x = 66 inches and x = 69.5 inches. If separation is defined
as the point where Cf -+ 0 , then the separation point as calculated by
the present method falls right within the range of x = 66 inches to x =
69.5 inches, and is at x ~ 67 inches (Figure 84). With R, = 20 inches,
separation occurs at x> T3 inches, and for zero wall curvature, the
flow does not separate until x ~ 80 inches. This supports the previous
conclusion that under the same distribution of potential velocity at
the wall, the flow separates earlier when the surface has a convex
curvature.
The calculated Cf agrees well with the measured Cf up to
x = 59 inches, and after this the calculated value is generally lowered.
The reason is that in the actual flow, the inviscid-viscous interaction
causes the velocity distribution to level off, and therefore has a
delaying effect on separation. This is borne out by the fact that if
the measured velocity distribution is used instead of the linear
decelerating velocity distribution, the present method gives good agreement
with C, up to x = 66 inches. However, separation is predicted to be
at x = T8 inches, and no separation 1s predicted for the other two
cases. This points out one of the difficulties in trying to predict
near separation flow. Unless a way can be found to account for the
inviscid-viscous interaction near separation, the difficulty remains.
The agreement between calculated and measured velocity profiles at
Stations 4, 7, 9 and 11 is excellent (Figure 85). However, the agreement
is poor between calculated and measured shear stress profiles at

Stations 4 and 7 (Figure 86). 1In spite of the poor agreement, the point
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where 1 = 0 is accuratcly predicted. Even though the flow is undew
the influcrnce of a strong adversce pressure gradient, 1 still vanishes
at zbout half the boundary layer thickness, and that by decrcasing the
curvature to half, it pushes the point where 1 - O Dby about the
same amount as in thle cace of the constant pressure flow. This scems
to indicatec that curvaturc operates independently of the pressure gradient
and this may also be the rcason vwhy the value of (zl/A) , obtained by
considering flat plate data, works so well in this case. The designed
convex curvature not only causes Cf to decrease by about 25¢% (Figures
79 and 84), it also causes the maximum shear stress reached inside
the boundary layer to decrease by the same amount (Figure 86).

In conclusion, the value of (zl/A) so obtained is also good for
pressure gradient flow and that the present method can be considered

rather successful in the prediction of boundary layer developments

along convex walls with arbitrary pressure gradient.

4.6.2 Turbulent Boundary Jayvers along Concave Surfaces

The present cxperimental investigation has shown that the turbulent
boundary layer on a concave surface is different from that on a convex
surface becausc of the presence of a system of longitudinal vortices.
However, it is most desirable, from the practical engineer's point of
view, that turbulent boundary layers over concave surfaces can be predicted
by simple method like that discussed above. This would be possible and
therefore some approximations of the boundary layer growth could be
obtained if the following assumptions were made about the flow. Firstly,
assume the vortex pairs that consitute the vortex system are similar.
(This can be evident from Figures 64 and 65). Secondly, assume the flow
to be completely characterized by parameters which are obtained by
averaging over any one vortex pair. Finally, assume the eddy viscosity
function given by equation (L4.3-7) is capable of describing the resultant

"average" flow. That this assumption is feasible can be seen from



cquation (L4.3-T). For concave curvature, « is negative, so the factor
within the curly brackels in cquation (4.3-T) is always positive. 1In
simple terms, this can be taken to characterize the increased mixing

of flows over concave surfaccs.

It is only in this sense that the present calculatior: arc compared
with the mecasurcments on the concave surface. Since only two measure-
ments at two different 2z planecs in a vortex pair are made, the averages
of the various integral parameters can at best represecnt approximatcly
the "average" flow.

Having established the premise for the comparison betwcen the
present calculations and the measurcd data, the results are presented
in Figures 87 to 90. As a result of the vortex system, the Iaw of the
Wall does not hold. Since direct measurements on the skin friction have
not been made, the wall shear stresses at the four measuring stations
are not known. Because of this, no comparisons between Cf arc made.

The results for the velocity profiles are given in Figures 87 and
89. Presented in Figure 87 is the results at the x = 70 inches position.
The average values of 6* » 0 and H are included and these compared
quite favourable with the calculated values . The shape of the profile
is also quite similar. However, the calculated boundary layer thicknecs
is not the same as the average boundary layer thickness. At the x = 96
inches position, the calculated values of 6* and 0 are approximtely
L5% greater than the mean values between Stations L and 5, but the shape
factor H agrees to within 104 (Figure 89). This apparent difference in
8% and ¢ is probably due to the presence of more than one system of
vortices at this position.

The calculated shear stress profiles at x = TO inches and 96 inches
are given in Figures 88 and 90 respectively. The calculated shear stress
at the wall at both these locations seem to agree well with the measured
profiles, and at x = 70 inches the calculated profile and the average

of the measured profiles correlated very well near the wall (Figure 88).



Even the maxirum rcached and the position where this raxdimum occurs arc
predicted quitce corrccetly by the calculated profile. However, far away
from the wall, substantial difference between the calculated and the
average of the mecasured profiles begin to show. The difference increasces
tovards the cdge of the boundary layer, and become constant in the Tree
stream. At x = 96 inches, the average of the measured profiles show

a rather constant shear strecs across the boundary layer, and towards

the edge, the shear stress decreases steeply. However, the calculated
profile does not display such a shape at all (Figure 90). It has the
same chape as that at x = 70 inches with the maxirum shear stress
located away from the wall. (The appearance of the shear maxiium away
from the wall under a zero pressure gradient is due to the memory of

the adverse pressure gradient which the flow has gone through at the
entrance to the concave wall). Although the calculated valuc compares
favourably with the average of the measurcd values near the wall, the
calculated value is generally nuch lower than the average of the

measurcd values far away from the wall. However, this differcnce
decreases towards the edge of the boundary laycr. Even then the
calculated profile does not vanish but approaches a constant in the

free stream. The fact that the calculated shecar stress does not vanish
can be accounted for by the shear stress relation (k.2-19). As explaincd
in Section 4.2, t/p approaches the value of v( -2k Upw O”QRY) in the
free strecam when Ve is taken to be v outside of the layer. This

is a small viscous stress, and in the actual flow, the shear stress would
probably approach this value. On the other hand, in the present method,
no provicion is made to allow the eddy viscosity to slowly decreasc to

v , the molecular viscosity, as the edge of the boundary layer is reached.
Ac a result, the value of v, approaches 2 Ve (sec eq. (4.5-13)). For
flows along flat plates, the condition of zero vorticity in the free
strean implics zero shecar stress too. Therefore, it is immterial what
takes. TFor flow along convex surfaces, the shear stress goes

value VGF



negative somewhere inside the boundary layer, and although vanishing
vorticity does not imply vanishing shear in the free stream, the
eddy viscosity at the point where the shear stress goes negative is
taken to be v so that the shear stress will agein approach

-2k
v(-2k U__ e y)
o

in the free stream. Hence, in this case Ve adjusts
itself. This is evident from equation (4.5-10), since the quantity
inside the curly bracket decreases as 1 increases. However, the same
quantity incrcases with 17 if the curvature 1s concave, and this is

the reason why the calculated shear stress remains large towards the
edge of the boundary layer. This points to the need of modifying (£l/A)
in such a way that it will effect a rapid decrease in Ve towards the
edge of the boundary layer.

It can be argued that the condition of small viscous shear can be

satisfied by writing:

e T . ou
_-uv-ve(ay+kU)

|4

in accordance with Prandtl's (1929) mixing length argument. With this

expression for ( -uv), the eddy viscosity hypothesis becomes:

KU(dU Ly + kU) 3/2 (duly - kU)2

v 1l -

=V
e €F

QUAyY - wu)° 30 Hy(3U Ay + Xu)

Such an expression for Ve is undesirable because of the singular
behavior of Ve as aU/By_> 0 inside the boundary layer and

(QUMy + KU) = 0 towards the free stream. Therefore, in spite of the
fact that the condition of small viscous shear cannot be satisfied for
the flow over concave walls, the present approach is adopted.

In closing, it can be said that the present method can be quite

useful in predicting the mean characteristics of flows over concave
walls if (zl/A) is modified so that the condition of small viscous

shear in the free stream is satisfied.
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Chapter V
CONCLUDING REMARKS

5.1 Conclusions

As a result of this investipation, the following conclusions can
be drawn. For the sake of clarity, attempts are made to divide the
conclusions into the following three categories. The first two
catcgories are concerncd with the experimental investigation and
the first one is limited to turbulent boundary layers along convex
surfaces, while the second one dwells only on constant pressure turbu-
lent boundary layers along concave surfaces. The third and final
category includes those conclusions that are drawn as a result of the

theoretical investigation.

5.1.1 Turbulent Boundary layers along Convex Surfaces

(1) Tn spite of the secondary flow which arises as a result of
the longitudinal curvature of the test wall, a nearly two dimensional
flow is established along the central plane of the convex test section.
However, due to the rapid growth of the boundary layer thickness near
separation in the case of separating flow, the secondary flow becomes
quite significant.

(ii) The Law of the Wall holds for turbulent flows along convex
surfaces. TIt's validity can also be demonstrated through the method of
matched asymptotic expansion applied to the curved turbulent boundary
layer equations. The skin friction obtained from Clauser's plot of the
velocity profiles correlates well with the momentum integral.

(iii) A skin friction relation in which A is both a function of
(0P
Ty OX

plate skin friction relation as 6/R - 0 . It is applicable to turbulent

and 6/R is obtained. The relation reduces back to the flat

boundary layers over plane or convex surfaces with arbitrary pressure

5" JF

gradient so long as A (6/R ; — 5; is known.
T
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(iv)  Measurements in the case of constant pressure flow show that
the flow towards the end of the convex test section is not quite in
equilibrium although separately the velocity profile and the shear
stress profiles at the last two stations are quite similar. Also, the
measurements indicate that even if equilibrium is reached, the defect
part of the profile will be quite different from that of the corresponding
flat plate profile.

(v) The initial decrease in the intensities of turbulence is due
partly to the favourable pressure gradient and partly to curvature. The
inability of the intensities to increase further downstream is a clear
indication of the effectiveness of convex curvature in reducing mixing
between fluid layers.

(vi) As a result of the reduced mixing, the baundary layer
growth is retarded on convex surfaces.

(vii) Also the ability of the flow to support adverse pressure
gradient is reduced, hence, under the same wall static pressure distri-
bution, the flow would separate earlier than the corresponding plane
flow.

(viii) Turbulence energy production is drastically reduced and is
quite small at about half the boundary layer thickness.

(ix)  For the case with zero pressure gradient, the shear stress
decreases steeply outside the viscous region and approaches zero at
about half the boundary layer thickness., However, under the influence
of strong adverse pressure gradient, the maximum shear stress occurs
at some distance away from the wall, but it still goes to zero at
about half the boundary layer thickness.

(x) For the case with no pressure gradient, the shear correla-
tion coefficient again remains constant for the greater part of the
shear thickness, but drops to zero steeply towards the edge of the

shear stress profile.
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5.1.2 Turbulent Boundary layers along Concave Surfaccs

(1) A system of longitudinal vortices similar to the Taylor-
Gortler type vortices exicts. For a given geometry of the concave surfacce
and a given Reynolds number per unit length of the flow, the system of
longitudinal vortices is staticnary and does not depend on the upstream
conditions.

(ii) The limited data lends evidence to the fact that there are
more than one system of vortices. At least two such systems are detected
at stations 4k and 5, x = 96.0 inches.

(iii) The boundary layer at the position of the trough of the wave
is approximately twice as thick as the boundary layer at the position of
the crest of the wave. 1Initial evidence also indicates that the growth
rate of the boundary layer is the same in both these positions.

(iv) Instability of the fluid particles, as a result of the
concave curvature, promotes mixing between fluid layers, hence a sub-
stantial increase in the turbulence energy all across the boundary layer.

(v) The shear stress profiles at stations 4 and 5, x = 96.0 inches
show two peaks, one near the wall and one far away from the wall. The
location of thesc peaks for the measurcments at the position of the
crest are different from that at the position of the trough. The
existence of two peaks indicates the existence of two systcms of
vortices.

(vi) The Reynolds stress uw is positive when measured at the
position of the trough and negative when taken at the position of the
crest. The opposite is truc for vw . However, at x = 96.0 inches,
the distributions of uw and vw are definitely wave like and show
two peaks. Again this indicates that there are at least two systems
of longitudinal vortices at this stream position.

(vii) Unlike the case of convex curvature, there is no region
inside the boundary layer where the shear correlation coefficient is

constant. This is another indication of the three dimensional nature

95



of the flow.
(viii) For a concavely curved turbulent flow, turbulencc cnergy
production ic not confined to the region very close to the wall, rather

it extends ncarly to the edge of the boundary layer.

5.1.3 Theoretical Predictions

(i) The set of equations (4.2-15) to (4.2-18) is a self consis-
tent set of curved turbulent boundary layer eguationc.

(ii) The eddy viscosity hypothesis as proposed by Mellor and
Gibson is generalized to include the effect of curvature.

(iii) The value .OL1T for the ratio (4/A) is found to give
excellent correlation for all three cases including the concave curvature
case.

(iv) The results of the present calculations supports the
assumption that the value of (Qlﬂk)obtained by Jjust considering the law
of the Wall region can be used for the whole layer.

(v) For convex surfaces, the present method predicts the
boundary layer growth and the point of zero shear stress accurately.

The present method also predicts the separation point fairly well.

(vi) The present method can be used to prcdict the mean boundary
layer development on a concave surface.

(vii) For concave surfaces, because of the existence of the
longitudinal vortices, the constant B in the ILaw of the Wall is no
longer a constant. Although a certain log region still exists, the
skin friction deduced differs considerably from that predicted by the
present method.

(viii) With convex curvature in the mean flow stream lines, the
maximum reached by the shear stress is about T9% of the corresponding

flow over a flat surface.



5.2 Recomeendations for Tuture Work
The Tolloving cextenoions of Lhe present investisation arc
recomondsd for future work.

(i) In view of the simllarity of the equations that govern curved
Lturbulont bLoundory layers and those that describe stratified flows, a
frequene, corresponding to the Brunt-Vaisala frequency may cxist inside
the boundatry laycer. Both Eckinazil and Yeh's findings and a preliminary
measurements by the author do not seem to indicate the existence of such
a Trequency. However, due to the limited time available, this wvas not
pursued in depth, but the author believes that this aspect of the flow
should be investigated furthcr.

(ii) Efforts should be devoted to establish a formal analogy between
the centrifugal force cffect and the buoyancy effects in stratified flow.
(iii) Spectral measurements should be made in order to better
understand the detail structure of curved turbulent boundary layers,

and the results comparcd with the data of Eskinazi and Yeh.

(iv) The system of longitudinal vortices should be studied in
more detail, so that its effect on the turbulence structure can be
better understood.

(v) Measurements of shear stress at the wall arc necessary for the
clarification of thc question of the validity of the Iaw of the Wall
in concavely curved turbulent boundary layers.

(vi) More measurenments should be made in the transverse plane to
see if similarity of the flow exists. Also, more measurements are
required between the ecrest and the trough of the wave to establish the
fact that in the mean, such a flow can still be trecated assuning two-
dimensionality. No doubt, this will be of value to the practical engineer.

(vii) Parametric study of the curvature affect using the present
calceulation method will help improve design of such things as aerofoils,

turbine blades, etc.
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APPENDIX A
CONSTRUCTION DETAILS OF THE CURVED WALI TUNIEL

The curved wall tunncl used for the present investigations is an
open-return, suction type wind tunnel. Tt is powered by a two speed,
10 I.P. fan. The lover speed is capable of giving a flow with a Reynolds
number per unit length of L.37 x lO5 while the higher spccd gives a
corresponding Reynolds number of 7.56 x 105. Since all the runs on both
the convex and concave test walls are conducted with the lower Reynolds
number, the higher speed capacity of the fan was never used. The tunnel
consists of six different units, and these are: (1) the entrance section
(2) the contraction section, (3) the straight section, (4) the curved
test section, (5) the exit section, and (6) the composite unit of the
9¢ bend, the diffuser, the fan and its housing. The tunnel is assembled
by bolting these six units together as shown in Figure 1. With this
arrangement, the curved test section can be changed with relative ease.
The entire top wall and floor of the tunnel, from the inlet screen to
the diffuser, is flat, thus giving the tunnel a rectangular cross-section.
The depth of the tunnel is L feet and this gives a nearly two dimensional
flow on the side walls of the tunnel. The quality of this two dimensional
flow has already been commented on in both Sections 2.3 and 3.1

The entrance section of the tunnel consists of five individual
compartments 3 feet wide by 4 feet deep. Each has one layer of 2 1/2
inches thick Hexcel aluminum honey-comb of l/h inches cell size, and
each compartment is separated by a single layer of 18-mesh screen. These
compartments are bolted together with two more layers of screen, one in
front of the first honey-comb and one downstrecam of the last honey-comb.
This entire unit is then bolted on to the contraction section.

The contraction section is designed to give a contraction ratio
of 6:1. The side walls of this section are made of 1/8 inches thick
masonite, bent to the required curvature and kept in place by five ribs

of 1 inch thick tir cqually spaced on each wall. The top and bottom
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wallec of the tunncl are made of 1/2 inches thick paper faced fir plywood,
and are bolted on to the ribs on the cide walls. Both side walls are
lined wvith 1/16 inchen thick white panclite to give the required smooih
surface.

The ctraight secticn is h fect long and has a cross-cection of 6
inches by k8 inches. This crosc-ccetional geomcetry leads 4o nearly two
dimznecional flow cverywherce on the tvo side walls. The side walls
are made of 1/2 inches thick paper faced fir plywood lined with 1/16
inches thick white panelite. 1In order that the joint between the con-
traction scction and the straipght scction be smooth, the white panelite
lining is of onec piece. This can be accomplished by ccementing the lining
on to the side walls after the slralght section has been bolted on to the
contlraction scction, thuc making these two sections a composite unit.

One side wall of the straight scction is hinged to the contraction scction,
thus rcndering it adjustable. The adjustment is 1/2 inches at the end

of the straight section. The original intent was to achieve added control
on the frec stirecam velocilty distribution especially at the entrance to

the convex test section. Iater, it was found that lhe frce strcam
velocity remained rather constant up to about 8 inches Lo the exit end

of the straighl secltion, and a flexible flap installecd in the last 8
inches will provide the necessary control. A diagram showing the flap
and its control mechanicm is given in Figure 31. With the installation

of the flap, there is no nced for the wall to be adjustable any more.
Thercfore, it is positioned to give a uniform width of 6 inches with the
fixed wall and then seccurcly clamped to the top and bottom wall of the
straight ccction. Except for a scetion of 1 feet wide, 1/2 inches thick
paper faccd Tir plywoods are installed as the top and bottom walls of

this section. The side walls are strengthened with five ribs of 1 inch
thick fir equally spaccd belween the top and bottom to prevent them {rom
wobbling. A 1/2 inches thick by 1 feet wide lucitce is placed mid-way

between Lhe contrance and exit end of the straight scetion, so that flow
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cbservation can be made.

Together two curved test sections are made, one has a convex test
wall while the other has a concave test wall. The geometry of these
curved walls have alrcady been discussed in Section 2.1.2 and their speci-
fications given in Figures 3 and 4. Hence, only the details of their
construction will be described.

The convex test wall is made of cold rolled steel 1/32 inches thick,
with surface finish specified as 63 micro inches. The wall is rolled to
the specified curvature and its shape is maintained by four ribs of 1
inch thick fir also cut to the same curvature (see Figure 2). It is
then bolted to the straight section and to the fixed wall of the exit
section. The wall opposite the convex test wall is also made of the
same material. Since it is necessary to be able to control the shape of
the outer wall so that the desired pressure distribution on the convex
wall can be obtained, three rolls of struts, with six in each roll, are
installed. The linear adjustment is large cnough to give both a constant
velocity distribution and a linear decelerating velocity distribution on
the convex wall. Details of the control mechanism is shown in Figure 91.
As explained in Section 2.3.3, end wall jets are required for control
of the secondary flow. Four tangential jets of 1/8 inches I.D. are
installed at the entrance to the curved test section on both the top and
bottom walls of the tunnel. Two pressure regulators graduated to 1 psig
are used to regulate the air supply which is from the shop's main com-
pressed air supply. The large fluctuation of the main compressed air
supply made the installatio.. of the pressure regulators necessary. The
details of the end wall jets together with the side wall jet and the
flap are shown in Figure 31. The side wall jet has alrcady been dis-
cussed in Section 2.2.3., Due to the presence of the side wall jet, the
entrance end of the adjustable wall is secured to the straight section
frame. The exit end is then screwed onto the adjustable wall of the exit

section.
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For no other reason but the availability of material in the shop,
the concave wall is rolled out of 1/32 inches thick stainless steel with
a surface finish specified to 32 micro inches. The shape of the wall is
maintained by two ribs of 1/2 inches thick aluminum alloy spaced 28
inches apart. The opposite wall is made adjustable through twc rolls
of struts, with nine struts in each roll. It is bolted to the straight
section and the Tixed wall of the exit section. The details of the
adjustable inner wall is shown in Figure 92. The same number of tangential
wall jets are installed at the entrance to the curved section. However,
no side wall jet is required because the inner wall is adjusted to mini-
mize flow deceleration at the entrance to the concave test section.
Because of this, the entrance end of the adjustable inner wall can be
bolted to the straight section. Again, the exit end is screwed onto
the adjustable wall of the exit section.

The bottom wall of the curved test section is the base which
also serves as the support for the tunnel, while the top wall is made
of 1/2 inches thick lucite. The lucite top is not clamped or bolted
onto the side walls. The pressure difference between the ambient air
and the flowing stream will press the top onto the side walls. Ieakage
can be prevented when rubber seals are cemented onto the side walls as
shown in Figures 91 and 92.

The exit section is so constructed that one adjustable wall is
all that is required to accommodate both the convex and concave test
sections. Then come the 90° bend, exit diffuser and the fan and housing
unit which are all bolted together to form one composite unit. The

support for the whole tunnel can be adjusted to give a level bottom wall.
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APPENDIX B
POSITIONTNG AND ACCURACY OF TIF, VARTOUS TROBES

1) Conrad Probc

The Conrad probe 1is used as a nulled dircction probe. The null
angle can be found by aligning the probe in the dircetion of flow in the
pipe flow system (Figurc 93). The Conrad probe is carried by a rotary
probe carrier (Figure Q@ ) which in turn is fixed to the probe carrier
(Figurc 10). The whole unit is then mounted on a horizontal platform,
and the Conrad probe introduced into the pipe flow horizontally. Every-
time the Conrad probe is introduced into the rotary probe carrier, it
is set into the same position by a set screw with a conical tip that
fits right into the conical dent in the probe. This arrangement allows
a refcrence for the null angle measurement to be established, and does
not depend on the relative location of the whole unit as long as the
probe carricr is always mounted horizontally. Once the null angle is
found, the whole unit is then transferred to the curved wall tunnel.

The Conrad probc is introduccd into the test section from the wall
opposite the test wall, and the probe carrier is mounted as shown in
Figure 10. 1In order that the axis of the probe be normal to the wall
where measurements are to be taken, radial lines are inscribed on the
bottom wall and the lucite top of the tunnel. The probe axis is then
aligned with these radial lines by sighting with a telescope placed on
the lucite top. The Conrad probe is shaped like a goose-neck (Figure 8)
so that the edge of the probe is aligned with the axis of the probe.
Hence, once the axis of the probe is aligned with the radial lines, the
edge of the probe will traverse along the normal to the wall. Since
both the curved wall and the Conrad probe are made of metal, an electrical
circuit can be so arranged that when the probe is touching the curved
wall, a light goes on. When the probe is brought back to such a position

that the light Jjust goes off, the rcading on the veraicer mounted on the
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protns cacrier is noted. This gives the zero reading for y . This way
ol pooitioning the proube hnc an accuracy in y of the order of + 0.001
inchcee.  Since the traverse 1o towurds the frec stream, and bocause of
the cmall uncertainty in the measurement of  y , the mealurcmenis ncar
the wall will be much less accurate than thoce far away from the wall.
The rotation of the Conrad probe is controlled by a set of gears so
arranced that the swmallest angle which can be measurcd accurately on the
dial is onc tenth of a degree.

The reason for choosing this particular probe (see Figure T for
probe geomctry) for the yaw measurements is because of its high scensiti-
vity and iis zero scale effcet (sce Bryer, Walshe and Garner 1958) .
The pressure difference between the two openings is measurcd by a Pace
Model CP91D-.1P3ID pressure transduccr and the read cut is on a DISA
Digital voltmeter. DBecause of the pressure fluctuations, the Conrad
probe can be rotated to read to +.01 volts only. The sensitivity of
the probe decreases with the free stresm velocity (sce Figure T),
thercfore the accuracy of the yaw measurement deecreasces as the wall is
approached. To determine the effect of the free stream velocity, the
null angle of the probe is measured for two different velocities in
the pipe flow. For a velocity of 72.6 ft/sec., it was found possible to
determine the null angle to + .2°, and when the velocity is reduced to
28.9 ft/sec., it was only possible to determine the null angle to + 0.5%.
Even though the turbulent fluctuating velocitics in the curved tunncl
are not the same as that in the pipe flow, mch the same accuracy would

be expected when the Conrad probe is used to measure the secondary flow.

2) Total Head-Probe

The total-hcad probe is also shaped like a goose-neck with the
edge of Lhe probe aligned with the axis of the probe (Pigure 7). wWith
this configuration, the total-hcad probe can be positioned in the tunncl
in the same manner as the Conrad probe, therefore, the same accuracy

in the mecasurcment of y .



The major source of errors of a total-head probe used for measure-
ment on a low velocity strecam are the effect of turbulence, the effect
of yawing and the effect of a wall. The errors due to the effect of
turbulence on total-pressure readings are not well understocd. However,
assuming the frontal part of the probe to be a stagnation point,
Goldstein (1936) found theoretically that the total-head probe measurcd
the total head of the total velocity vector, i.e.,

2
Py, = Py + L o((u + )" + v© + w?)

This expression is correct only if the frontal area can be considered a
true point. However, due to the finite size of the total-head-tube
hole, deviations from the above expression may be expected. Aside from
the lateral velocity gradient effect, which is neglected in the above
expression, there is also the lateral velocity fluctuations effect.
This may not produce an impact pressure as given by Goldstein's expression,
but rather appreciably smaller. Hinze and Van der Hegge Zijnen (1949)
neglected the effect of the lateral turbulence velocities and arrived at

a 02

- RS 1
Py, = Py + 20U +32pu

If Pt is the true total pressure, then

Pti - Pt

F\Jl gl'\)l

2

]

2 pU
Hence, for a turbulence level less than 10%, the error in total-pressure
measurement will be less than 1% of the dynamic pressure. For the
present investigations, the turbulence level in the flow along convex
surfaces is always less than 10%, therefore the readings of the total-
head probe are not corrected for turbulence effect. As for the velocity

profile measurements on concave surfaces, hot-wires are used, thus

eliminating the need to correct for turbulence effect, since in this
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coce, the turbulence level is expocted to be higher than the cormgesponding
flow alons convex surface.

Graccy, et.al. (1951) found that most simple total-head probes arc
yather insensitive to yaw. They prescented their data in terms of the
Meritical angle" of a given probe. The "eritical angle" is defined ac
thot angle al which the error in reading the total pressurc amounts to
19, of the indicated dymamic head. They found that for all simple probes,
ranging from cylindrical heads to ogive heads, the critical angles arc
of the order of + 15° in subsonic flow. Rogers and Berry (1950) also
found that the critical angles for a round nose probe and a flat nosc
probe are of the order of + 15° . Therefore, the flat nose total-head
probe uscd in the present investigation is quite inscnsitive to yawv.
Although there is a certain amount of secondary flow in the test section
due to the longitudinal curvature of the test wall, the flow in the
plane of symmetry is not expected to deviate too much away from the
stream direction. Yaw measurements show that the angle of deviation i1s
less than a degree. Again, there is no need to correct the total pressure
measurcrents to account for probable yaw of the flow.

Very little work has been done to investigate the probe-wall effect.
By observing the response of a one-sided rectangular tube with the wall
as the bottom surfacc, in a known laminar profile, Stanton, ct.al. (1920)
were able to ploi "effective position of tube" against "opening of tube"
and used this plot as a calibration curve in interpreting measurements
near the wall in turbulent profiles. The correction Tor wall effect
was found to be in the form of an "effective displacerent"” of the probe
centre. Corrections to the measurements near the wall are made using the
curve of Stanton, et.al., but the corrections are found to be negligiblec.
1n using the curve of Stanton, et.al., the assumption was made that the
effective displacement was equal in the calibrated laminar boundary
layer and in the measurcd turbulent layer. IHowever, this assumption

does not hold even in the viscous sub-layer of the turbulent boundary
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layer. Ao a result, the wall cffect is not fully accounted for by
the curve of Stanton, ct.al. on top of this, the transverse velocity
gradicnt ¢ffect is also important. These two elffcets together would

account four the cobserved shifts of the meacurcements near the wall.

3) Hot-Wire Probes

The hot-wire probe is introduced into the tunncl much the same way
as the Conrad probe and the total-head probe. However, in this casc,
the distance between the hot-wire and the wall cannot be measured by
the samc method. This is due to the fact that the hot-wire probe,
unlike the Conrad probec or the total-head probe, is very fragile, hence
the hot-wire will break once it touches the wall. To remedy this, a less
accurate method for determining y is used.

A broken hot-wire probec is used as a dumny probe. The length
(from the tip of the prongs to the edge of the adaptor) of this dummy
probe is measurcd accurately (to one tenth of one thousand of an inch)
using a telescope. The length (from the hot-~wire to the edge of the
adaptor) of the hot-wirc probe is also measurcd to the same accuracy.
First the dumny probe is used and the probe is traversed inwards towards
the test wall until the tip of the prongs touches the wall. This cleoses
the electric circuit and the light goes on. The probe is then brought
back until the light just goes off. The reading on the vernier in the
probe carrier is noted. The whole probe is then retracted until it is
outside of the tunnel. The dummy probe is removed from the adaptor
and the hot-wire probe is put in its place. Knowing the backlash of
the probe carrier, the length of the durmny probe, the length of the
hot-wire probe and the vernier reading at the point where the dummy
probe just touches the wall, the hot-wire probe can be set at any distance
away from the wall by moving the probe towards the test wall., With this
arrangement, the boundary layer is traversed inward Trom the edge and
not outward from the wall.

The miniature TSI hot-wire probe has a mark on it so that every
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tine it is snapped into the adaptor, good contact is ensured only when
the mark on the probe 1o fluched with the cdge of the adaptor. This
also ensurcs that the length between the hol-wire and the edge of the
adaptor is always the same. This fact is borne out by repcated measure-
ment of the length when the siiniature hot-wire probe is snapped in and
out of the adaptor. The maximun variation between five different
measurcments is less than 0.001". The backlash of the probe carrier

is mcasurcd by a dial gauge to 0.001". Repeated measurements show that
the backlash varics between 0.006" and 0.010". The backlash was also
checked from time to time and in no case was it found to exceed 0.010".
A mean value of 0.008" is used for all hot-wire measurements.

With this arrangement, it is possible to determine y to an accuracy
of + 0.008". Since the accuracy of the hot-wire measurement near the wall
depends on the size of the wire other than the velocity gradient, heat
transfer to the wvall, etc., it is not very meaningful to try to measure
the turbulence velocitiecs any closer to the wall than the length of the
hot-wire. The miniature TSI hot-wire has a sensitive length of 0.050",
therefore an error in y of + 0.008" will not contribute very much to
the overall error of the turbulence velocities measurements. Besides,
the measurements at Station 1 serve as a check not only in the two
dimensionality of the flow, but also in the accuracy of the above
arrangmennt for the determination of the position of the probe away from
the wall.

The various effects associated with the rotating-wire method that
affect the accuracy of the hot-wire measurements have been discussed by
Bissonnette (1970), thercfore they will not be repeated here. As for
the reliability and the overall accuracy of the rotating-wire method,

Appendix C discusses this in some detail.

107



APPENDIX C
FULLY DEVEIOIED TURBULENT PIIE FIOW EXPRRIMEHT

In order to test the accuracy of the rotating-wire method, a
fully developed pipe flow experdiment is set up. The pipe assembly has
a convergent nozzle at the entrance. This is then followed by a diffusor
and two layers of 2 1/2 inches thick Hexcel aluminum honey-comb flow
straighteners of 1/2 inches cell size. The flow straighteners are pre-
ceeded and followed by two 18-mesh screens. This is followed by two
18 feet long aluminum pipes of 6.005 inches I.D. The working section
is downstream of the aluminum pipes and is made up of one 3 feet long
lucite tubing which is machine bored to 6.005 inches I.D. Downstream
of the lucite tubing is another aluminum pipe of 3 feet long. In order
to minimize vibration in the flow in the working section, the exit diffuser -
fan housing unit is connected to the aluminum pipe by a bellow. The pipe
flow tunnel is of the open-return, suction type and the air is drawn in
by an axial flow fan driven by a variable speed d.c. motor. A picture
of the pipe flow tunnel together with the hot-wire equipment is presented
in Figure 93.

Fully developed turbulent flow is obtained at about 60 diameters
downstream of the entrance. The axial pressure gradient for the next 18
diameters is plotted in Figure 94. The friction velocity can be calcu-

lated from the measured pressure gradient and is given by:

2 i 1 dp
u = — —— — -
T 2 p dx (C 1)
d
where ri is the inner radius of the pipe and a§ is the axial pressure

gradient. If the flow is fully developed turbulent flow, the Reynolds

stress uv is related to the friction velocity u, by the expression:
T
uv. = U, (—) (0_2)

However, very close to the wall, this does not hold.
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The measurcd uv  is compared with the theoretical prediction as
given by equations (C-1) and (C-2). The comparison is shovm In Figure 95
and the gencral agreement ic good. The measured normal stresscs W R =
and we are shown in Figures 96, 97 and g8. Together with the present
data is also plotted the data of Laufer (195h), Sandborn (1955), and
Patel (1963 and 1968) for comparison purposes. It is seen that the
present data falls well within the evident scatter between the various

sets of data.

If the flow were truly axisymmetric and fully developed, then the

off-diagonal stress components uw and vw are zero. The values uw
and VW as measured by the rotating-wire method are lecs than 5% of
the local uwe . Also, these values are randomly distributed across the
pipe.

The above comparison shows that the rotating-wire method is rather
reliable. Tt also indicates that, in similar flow conditions, the
rotating-wire method will permit the determination of each component of
the Reynolds stress tensor to about 5% of the locally .easured turbulence
energy per unit mass. This estimate will no longer be true in regions
of very high shear such as boundary layer measurements very close to
the wall.

The above work on the verification of the rotating-wire method was
performed in cooperation with Mr. Luc Bissonnette, who is also a graduate

student in the Department of Aerospace and Mechanical Scilences.
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APPENDTX D
CURVED BOUNDARY IAYER EQUATIONS

THROUGH METHOD OF MATCHED ASYMPTOTIC EXPANISTONS

Equations (L4.2-7) to (k.2-9) are made non-dimensional by dividing
all velocities by UO s @ll coordinates and the radius of curvaturc R
by £ and the pressure by pUO2 « The Reynolds stresses arc made non-
dimensional by ut2 where ut can be any velocity characteristic of
the turbulence field. After some algebra the equations can be written

as:

St oar (o (p-1)
EE—KY—U%%+V§—3+%UV T l+}q§_§+

1+1KY§§[€2 Ty + eeé(ﬂ%g—g+%vn

r (P E e tanm & () « L3,

P e [(100) 5> () il (p-2)
ﬁﬁug+vg¥-lfmljg = 'g_i

+131q5% (8 + P [(“Ky)a%(lfm)

1jméa—>¥“+ %{E2Tn+€2€2%¥ -
1§Ky{[€2Tm+€2€(lTQKYg%+%V)] )

[? Ty +egE2-§—¥]} (D-3)

110



1 oV au K
= TSy Sy TV (D-1)
1+KY ¢X  0Y  14KY
where Tij are the non-dimensional components of the Reynolds stress

tensor and

N

2 Uy 2 A v
e = — s € e = —

o

e

Mellor (1970) has shown that —;4~ 0 as ¢~ O for arbitrary n .
Therefore, the technique of matched gsymptotic expansion in terms of ¢
is applied to equations (D-1) to (D-4) for the sole purposc of seeking
a set of sclf-consistent second order boundary layer equations.

Due to the presence of the two small parameters e and €& , threc
regions exist in the flow field and these are: (1) the Outer or Tnviscid
Region where the length scale is £, (2) the Middle or Defect Region
where the characteristic length is Ay = ef , and (3) the Inner or
Viscous Region where the length scale is EAt = el . Since the radius
of curvaturc is assumcd to be of the same order as £ , K(X) = 0(1) .

Mellor's (1970) procedure is followed closely in the subsequent derivation

of the boundary layer equations.

Quter or Inviscid Layer

In this region the free stream turbulence and the free stream
vorticity arc assumcd to be zero, hence Tij =0, ¢t =0 and the following

expansions are assumed

U = Ul(X,Y) + eUE(X,Y) + €2U3(X,Y) e
Vo= v (K,Y) +evy(X,Y) + egvg(x,y) T . (D-5)
P o= Py(X,Y) + ePy(X,Y) + €2P3(X,Y) e,

Substitute (E-5) into cquations (D-1) to (D-3) and collecting terms,

the following is obtained,
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to first order

(-7)

aUl 3
AR ((1xx)vy) = 0
U AU oP
1 1 _1 K . . -1 71
Ty 159%x TVi5y T Y1 T+KY 5%
AV 3V oP
1 1 1 K 2 1
sk tVisy T Tt T osy
to second order
aUg S
S-X—- + a—Y_ (1+KY)V2 = 0
1 oUs oUy dUo oU;y K
Ty Uiy a5y )t sy tVasy )t oy (UiVatloVy)
_ .1 %%
T 1+KY OX
av. AV v av.
1 2 1 1 2
Ty Uisxy tlesxtt sy tVisy)
oP
X _ - ore
Ty YiV2 T T 5%
to third order
U
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Middle or Defect layer

In this region, the length scale 1s At = ¢4 , therefore Y =€y
where v is the normal coordinate in this region. In addition, the

following expansicns arc assumed

2
g = ul(X,y) + cug(x,y) + € uB(X,y) F o oveeees
2
v = e{Vl(X,y) +ev (X,y) +e VB(X,y) Foaeenn }
D (D-9)
P = Pl(X,Y) + EPE(X,y) + € pB(X’y) e
T, =t.. (X,y) + et (X)+2t (X,y) +
lJ - liJ Y € 21J Y € 3i,j sY) T eenan
Hence
1 +KY = 1+ €Ky

and

- 2 2
(1 + eKy) o1 Cery +eT(xy) - 63(1@)3 + eh(KY)h

Rewrite equations (D-1) to (D-3) in terms of X and y . Substitute
(D-9) into the resultant equations and collecting terms, (since € =
0(e™), all terms that have ¢ as coefficient can be neglected) the

following is obtained:

to first order

aul Bvl
—_— + —= =0
aX 3y
Bul aul BPl
Wt sy T (2-10)
Bpl
° = &
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to second order

8u2 Bve B(Kyvl)
S

Bu2 au2 Bul au
1o T 1Sy e tYisy (D-11)
_ J
Kvl(ul +y 55 5% + 3
op
2 2
SEE T

to third order

81«13 5V3 B(Kyv2)

— — —— —_

oX oy oY
Bu3 6u3 aul Bul du,

ul gi— + Vi g;— + u3 gi— + v3 g;- + u2 Si—

aU.2
+ Vé 5;— + K u2 vi + K ul v2 +

(D-12)
Bug Bul atlx ap3

W Msy * Y28y "3y YT ose

atlxx + at2xy

+ 5% Sy + EKtlxy
ov. ov Bp3 atlx
ula—}'(_J'vlaT'Kul(guzKyul)"a_y_ Sy

Inner or Viscous layer

In this region, the length scale is éA hence y =&y or

.t )
Y = €€y , and

1

~ - a2 N
Ty - L€ (k) + (e€)T (k) ...l

114



The following expansion is assumed:

. . . . 2 .

U = ul(X,y) *oel(X,F) +e u3(
~ - ~ - 2 . -

vV = ee[vl(X,y) + €V2(X,y) + e v3(X,y) + oeen.
- - - - 2 . -

P = pl(X,y) + cpg(X,y) + € p3(X,y) +

T, =% . (5§) +el . (X,5) + 23 (x

1y~ gty TRy MY ) ety (X

Revwrite the equations (D-1) to (D-3) in inner variables.

(D-13)

Substitute (D-13)

into the resultant equations and collect terms, the following is obtained:

to firstorder
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a ~
0 = 55 by * 55
28, dbyyy
0 = -a—y- + 55 (D-l6)

The aim here is to obtain a set of first order curved boundary
layer equations, therefore the solutions of these various equations will
not be discussed. Instead, the reader is referred to the paper by
Mellor (1970). The boundary conditions for the three layers are very
well discussed in Mellor's (1970) article and these will not be repeated
here. However, it should be pointed out that the conditions of zero
vorticity in the free stream is satisfied by matching the vorticity in
the middle layer as Yy > to that of the outer layer as Y= O .

This gives:

to first order

R
yPim 55 - 0 (D-17)

to second order

Bug
Lim {-— - Ku} =20 (D-18)
oy 1
y o
The set of second order boundary layer eguations is given by the sets
(D-11) and (D-15). The free stream vclocity is given by (D-17) and (D-18).
gince the first order equations in the Middle and Inner layers are the

same as that for a flat plate (see Mellor 1970 }, the solutions to u

1
d :
an Vl are
w, o= Ul(X,O)
= - 0
Vl Y U] :{(X; )
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With these substitutions, the boundary layer cquations become

s tay T MY (D-19)
dup Bug du,

Uik e TS X

au
d 2 1 o ,1

- Ky - Ky v 55 ) (D-20)

op
2 _ le

KUl (X)O) - ay (D-21)
where

L - +v éﬁg

P dy
and

. 5u2
Jon &) o

The rather surprising result is that equations (D-19), (D-20)
and (D-21) are linear. It is believed that they are the self consistent
turbulent boundary layer equations (also for the plane case obtained by
simply setting K = 0). However, turbulent boundary layer researchers
have long been accustomed to making some of the approximations involved
in these equations (and justified consistently in a laminar like boundary
layer approximation), but not others. Notably the non-linear terms in
the x-momentum equation are retained. For the present working equations,
the same practice is adopted here. This is to conform to convention and
hopefully to improve accuracy although in the light of the present
asymptotic analysis this practice means that some higher order terms are
being reinstated while other terms of the same higher order are being

left out. Thus, reinstating some terms found in the original equations,
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the set of boundary layer cquations become:

g%+g—\;+kV= 0 (p-22)
Ugg+vg—3+kuv=-%g§+a%(§)+2k§ (D-23)
R (D-2k)
Lim (gﬂnm) = 0 (D-25)
y e O

Here the full non-linear advective terms in the x-momentum equation
are reinstated. Also, in order to satisfy equation (D-25), i.e.
U ~ UP =U e-ky as y * o , it is necessary to include both viscous
terms in equation (D-23) where

5o v, G- w) (p-26)

In this way the combined viscous term will limit to zero and the outer
boundary condition can be satisfied even if Ve approaches constant as
Yy > o . The constant may be the actual molecular viscosity or it can

be the eddy viscosity artificially maintained constant for large y -

In the case of plane flow it is well established that whether ve main-
tains a constant value or decreases for large y makes little difference
in the results.

As explained in the text, it 1s necessary to keep the term kU2

on the left of equation (D-24) rather than replace it with ku® , for
example. Otherwise, the pressure term will not quite balance out the
advective terms and the integral of equation (D-23) will not exist. This
is not only uncomfortable with regard to the von Karman integral, but is

equally uncanfortable in the process of numerical integration of the

full equations.

118



APFPENDIX E
DERIVATION OF THE TURBULENCE ENERGY EQUATIONS FOR

CURVED BOUNDARY IAYERS

The equations for U—g s v2 and w_g can be obtained by rultiplying
equation (L.2-11) by u , equation (4.2-12) by v and equation (L.2-13)
by w . Similarly the equation for uv is obtained by adding v times
equation (L4.2-11) to u times equation (4.2-12). Making use of both
the continuity equations for the mean and fluctuating quantities, and
taking the time average of the equations, the results are:

du® 1

ou 3 -
ot +l+ky8x [u2U+u +2u(p1

+B_B§(ugv+E_2u_T' }+§Z(E—2u1xz}

- —_— 2
— ) ) B 2u“ dU
{2uvl + 30" V+3uv} = Trky B_X

k
1+ky

psoU 2 ou 2 o ou
uv 3y  l+ky P 3% 1+ky Txx Ox

ou Mo/, ou
Txy dy  1l+ky XY Txz 3z

(E-1)

BVQ v‘2U v2
— + { + u -2vry}

ot l+ky B X

8 (2, BT T Ty . S =
+ é-—y- (v v+ v2+2v(p - ’l’yy)} * 57 {V%J - EVTyZ}
(5-2)

(l@uvU—v V+2uv-v3]— 2uv oV

1+ky ox

l+k

2T
2k
rak M 213‘av XYW _ . W OV vt ~-1_)
ay dy l+ky ox YY oy Tyz 3z l+ky xx vy
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owv 1 2 2 —
8_13_+l+ky8x (v U + uw —2wrxz]+
0 [2. . T _— O (3, o
Sy {(WvTV + vw - 2WTyz] + 52 {w” + 2w(p-—1—zz)]
— E-3)
_ - (
k 2 - ow Xz oW
Py (VW) =25 - T Sy
2 al + 2k - él
Tyz oy  l+ky Tyz T2z 3z
duv 1 d .— T 3 — T2
5t T 1l+ky OX (W + u'v - Txy * v(p~Txx)] * oy vV + uv - VTxy
+ u(p~-t__ )} +§-{E-E - vr_ )
vy oz vz Xz
22 2 3 2 3y dv
+l+ky[(v-2u)U+uv-u + uv +2uvv)=-ma—x--uvg;
(E-4)

Txz 3z 1+ky = 'xy 1+ky M xx yy

In accordance with the mean turbulence field closure scheme of
Mellor and Herring (1970), assumptions are made to relate all terms in
equations (E-1) to (E-4) in terms of u—""tl"i 3 For the sake of completeness,

these assumptions are;

Bujuk \ auiuk . Buiuj

u.t, ., +tu 1, = v(
ik ki
J J Bxi axj Sxk

) (E-5)
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du. au
Tk.a——+'rk é-—J— = g%?)ﬁi.
J Xk 1 Xk 3 J
ou, O s
_i__1lg _ i) 2
an - 6 Bl {ul uj 3 q. ]
— Yol
Py 3 Ox,
i
S U R O3 4
gk itk i%g
uiujuk qB3 { ox, ox, ox J
i J jid

Wwith these simplications and after much algebra, equations (E-1) to

reduce to

F s P .28 2w
Dt 34 3¢ 3 A l+ky Ox
3 o  —. 2
_2uvay—1+ky {uvU + u V)
102 1t 13
* Ty ox Blar ) T 5% ° 3 2 Tiny ox )
2
bS] 2 Buv Bu 2 Buv
Sy (v g 5x "oy ) 1+k (o) g 5%
o) 2 duvw Bu 2 Buv au
+8—z{(qﬂ3+v)(l+kyax dz )]+l+ky (1+ky8x Y
N — o 3
oo vy ,Ed _la (212 24, M 5
Dt 1l+ky dx v Sy 3£l(v 3Q) 3 A +1+kyuvu
13 1 S:_ duv :;
Triy 5% {(Q£3+V)(l+ky St 2 g;*)} [3(Q£3+V) Sy
ST v duv
* dz {(qu3+v)(2 S&— * oz 520 —lT [(qz 1/)(l+1r'y ox
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(E-6)

(E-T)

(E-8)

(E-9)

(E-10)

Bu

t5y )

(E-L)



auE‘ Q.VE)} .k { (_____2 éa_;Jra_uQ_)
dy dy l+ky q“’33 1+ky dx oy J

(E-12)

v —dv —au 2,

l+ky ox ~ ey "W S, TV 5y T Ty

S

(2 2V, du%
3 ‘1+ky ox oy

2 7o -— k
{(2u =-v U - uvv} + Trky as

— 2 2
1 9 2 _duv du, 1 3q°
T Ty ox {(”3+v)(1+ky Sx T30 ¢ 3 %o 577

) 1 8v2 2auv)_l_lq‘EE aq 9
1+ky ox oy 3

* 8_3; [(q,e3+v 1+ky ox 3 3z

1 dvw  duw  duv k
[(%3+V)(1Tkygx— + 5y ¢ 87)] + Trey {(%3+V)

" 2
1 du_
1l+ky dx

1 sz auv)]

k
(l+ky d3x -2 {(q!,3+v)

2 l+ky

— 2
1.1 Bv auv 3 k qg3 du
+ v Py -2 = 2 U (B-13)
l+ky 2 l+ky 9% oy 2 1+ky 1+ky ox

Invoking the two dimensional boundary layer approximations, and
in addition, the boundary layer thickness is assumed to be very much
smaller than the radius of curvature of the surface, such that S/R(x) <1,
then the coefficient 1 + ky can be approximated by 1 . With these
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simplifications, equations (E-10) to (E-13) reduce to

m- D Ju” ou_
]—)-t——_ay[(qﬂsw)a )+ 2k {(af W)By )
ou . lg 2 _ 1.2 24a

+k[q£3ay] 321(11 3q> 3 A
e w L e a

2 uv S5 2k uwU (E-14)
Dv. d Vo2, 39y g O
Dt Sy [3((1,33”“/) 3 + 3 q,@2 dy ) k(q£3 oy

- - _
ou  _ ,ov, _lg 2 1 2

(9 v )(§ 3570 73 7 (v -34q)
29w (5-29)

3 A !

2 -2 72
v ov” L
Dt dy ((%3”) Sy )tk [(q,e3+v) oy )
_lga (;2 - a’ (E-16)

34 3 ¢ 3 A
Do 3 duv duv 51:2

- duv ou_
D = [g(q;g3+v) 55 ) + 2k(q,e3+v) Syl k(q£3) Sy

duwv _laq — 23U, .2 2 -

PRy T WY Sy A Y e
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PROBE

!

y
FLOW ‘:> .

48(IN)
STATION NO. | 2| 3 4| 5|86 71819 10} I1|12
X (IN) 24 |52.5[545(545|545/565] 59| 63|67 | 71 | 71 | 7

STATIONS 3 AND 10 ARE (4 (IN) ABOVE PLANE OF SYMMETRY
STATIONS 5 AND 12 ARE 14 (IN}) BELOW PLANE OF SYMMETRY

FIG. 5a. LOCATION OF MEASURING STATIONS FOR CONSTANT PRESSURE
FLOW ALONG CONVEX WALL

PROBE

FLOW [:> )

48 (IN)
STATION NO. ! 2 3 4 5 6 7
X (IN) 24 |52.5|54.5|545|545(56.5| 59 |625!62.5(62.5| 66 [69.5

STATIONS 3 AND 8 ARE I14(IN) ABOVE PLANE OF SYMMETRY
STATIONS 5 AND IO ARE 14 (IN) BELOW PLANE OF SYMMETRY

FIG. 5b. LOCATION OF MEASURING STATIONS FOR SEPARATING FLOW
ALONG CONVEX WALL
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SENSOR

4,5
PROBE
STATION NO. [ 2 3 4 5
X (IN) 24 70 70 96 96
Z(IN) AS MEASURED
FROM G 0 672 1.344 | 1.008 2100
TROUGH | CREST | TROUGH | CREST

FIG. 6. LOCATION OF MEASURING STATIONS

FLOW ALONG CONCAVE WALL

FOR CONSTANT PRESSURE
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Fi,wire 17, Probe carrier witn attached rotary device.
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v 5
DIRECTION
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w / B
B 0 "
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SLANTED - WIRE
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(6]

CONE SURFACE

(p) PROJECTION OF SENSOR IN PLANE XOZ

{m) NORMAL TO LINE (p) IN PLANE XOZ

FIG. I8. COORDINATE SYSTEM FOR THE ROTATING STRAIGHT —WIRE AND
SLANTED - WIRE PROBE

145



*qNUITO B3 TOA 2dBNbDS UEBSW DPIZTIBIUT] JO S0BLY Jag40Td A-¥ oTdwes

‘61 eandid

i ‘
f - '
-~ 13 B 4
i ' H
! , 1
. 1 : i
. i , :
~ | ¢ |
- H i i J
b ' ! ;
— : J :
; | :
; ; — : i ;
i : i ,
“ree i i T
: ; :
. 4 - N SUN - FRUN S
: ! 1l : ; :
= . e !
1 0 : ~ . !
: : : ; :
. - + . - .
{ . ' H i :
| : ; b :
W “ T i - _
‘ i ! : : : : :
: ! : : : : : !
! . ; & M i : e
—— - H N £ v i
! i N : ! !
i v : t : 3 : o -
: : : J : 1 ; i
| i i ~ : |
M + . T P i
[ H H i ! [ : :
i ! : ! | : i :
| : 1 1 ' : T . } - -
: i ‘ ; :
: H . ! I :
H : i - ! ! :
: 1 ! f
: ! : ; i
f ; i { :
T 1 T ! !
. i : N '
f H : . - e U W SUUENG VSIS ORI JULTTURNN I
p ! o : . H IS :
. . } | | ;
H “ ! 1 T * T
i i ' :

146



TLULN0 3Pl T0A bJenbs uBswW PsZTIBBUT] JO 290BIY I9340Td x-y oTdwes gz 2anITJ

147

] f O N
T T | ¥
T
.
.- SRS S S
! i i
; : :
. '
| ;
: : | :
; i ;
T i i
: : ;
: H -
: ;
j :
; !
i
jaoy; i i : s 0]
e e 1 . ; s iate i 3
j ] s = ' oy ] R X
: i . N z H M
_ = o ¥ i i . 1 H . b <
: : 1 : . 1 ; } i : . :
: } H ) ; B | H ! . :
: H ! ; i - H :
. R ; S o ; | i : ;
m h i q, : M
! i ; : H H
i 1 H 1 -
. - DU T S DS DI U ! H v -
; e : : + ST e
; : ; : H :
O : : H :
+ i k4 4
i H 3 ! :
PO AR SN S :  UUDUS OIS SRR S . . SR SO
! i A i ! i
: b ' h § i
R - ! ! ! ! :
! ? 1 t Y
i ! ' H H !
B JODT SO . b R b ; - - .
: ; . ; ; ! H : H :
; ! : : ; ; ! .
. e < e : I i ; ;
H + . i T H .
; . : i H H M
. N ' . ceedan H [ P R JEN I SR PO PN . .
, i : m | i
M - ] H i i
: ) . ! i
H N ' N [REERTE SRR ; PR PINE FIIN SN DIANN DR NN SIS S S . : ' . .
: : : : i i _ :
. [ S e ; . !
? R SAREs s S B S s S e ERaus A Laans Peas SUUDS SISV DS SUDES SIS ISR TUIN SHESSIUSE SRS SIS SN S
R H m ' _ i
;
: i o | E SRS SRS FEUOU SUDTS FEUUN SUSOY CURTS NUETN FUUUS SO SUUOE O : :




CUOTLO8ITP ¥

UT @SJaABI} XOJ

IoTaxed 8qoad jo ydeaSojoyd

*Te PanITd

145



PRORE STRUT CROSS-SECTION

SCALE © 2x FULL JIZE

fe - ——

PROBE _CARRIER

CROSS - SECTIONAL DRAWING OF JSTRUT

FIGURE 22
AND PROBE CARRIER



SIDE WALL

LUCLTE TOP

A0 .
’v/_-“-'_u
FLOK
L = ——— — _r,_r_\l..__..
| Py
7T
{ \
! |
l C—==3t ool gl prneigleieer 2
‘ F___-J-- wn w-n) -
by
| i
Il {
Loy
vy
vy
\
\V,
' | | by
I PO At S S U

N_./-—‘_’" -
=

VM-M

FIGURE 23 PROKE POSITINY SCALE | FuLL SIZE




CALCULATION, MELLOR AND GIBSON (I966)
CONSTANT PRESSURE FLOW ALONG
CONVEX WALL

SEPARATING FLOW ALONG CONVEX WALL
CONSTANT PRESSURE FLOW ALONG
CONCAVE WALL
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FIG. 24
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NO. I, X(IN)=24.
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FIG. 75 DISTRIBUTION OF Gwi/UB, AND Wi/U3, FOR CONSTANT PRESSURE FLOW

ALONG CONCAVE WALL. MEASUREMENTS WERE MADE AT BOTH
THE CREST AND TROUGH OF THE WAVE.
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FIG. 79
COMPARISION OF SKIN FRICTION, SHAPE FACTOR, DISPLACEMENT
AND MOMENTUM THICKNESS CALCULATIONS AND PRESENT DATA
FOR CONSTANT PRESSURE FLOW ALONG CONVEX WALL.
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FIG. 80 P
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FIG. 83
COMPARISON OF DISPLACENENT AND MOMENTUM THICKNESS
CALCULATIONS AND PRESENT DATA FOR SEPARATING

FLOW ALONG CONVEX WALL.
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FIG. 84
COMPARISON OF SKIN FRICTION AND SHAPE FACTOR
CALCULATIONS WITH PRESENT DATA FOR SEPARATING
FLOW ALONG CONVEX WALL.
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FIG. 85

U/Upw

COMPARISON OF VELOCITY PRCFILE CALCULATIONS AND
PRESENT DATA FOR SEFARATING FLOW ALONG CONVEX

WALL .
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FIG. 87 U/Upw

COMPARISON OF VELOCITY PROFILE CALCULAT.ONS

AND PRESENT DATA FOR

CONSTANT PRESSURE FLOW

ALONG CONCAVE WALL AT X (IN)=70
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COMPARISON OF VELOCITY PROFILE CALCULATIONS
AND PRESENT DATA FOR CONSTANT PRESSURE FLOW

ALONG CONCAVE WALL AT X (IN)=96
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5TATLION
DELS (IN)

1

0.

CONSTANT PrESSULZ

Ju 3

Y (I3)
0.004
0,006
0.004
D.010
0.012
V.04
U.019
0.024
0.029
0.C34
0.039
0.044
0.054
0.004
0.074
0.084
0.094
0.10u
C.124
0.144
0.164
0.184
0.204
0.224
0.244
0.264
0.284
0.304
0.324
0.344
0.364
0.384
0.404
0.454
0.504
0.554
0.604
0.054
0.704
0.754
0.804
0.854
0.904
0.9%4
1.0040
1. 174
1.204
1.304
1.404
1.574
1.604
1.704

ALY 1

X(TN) =
THETA (IN)

226

2

FLOK ALONG

4,00
T DHN

COLIVEX WALL

DINY =
gpe (FT/5L6C)
U(1r/srQ)
23.43
2€.29
30.13
33.61
35,19
36.43
319,33
B0.92
u2.34
43.15
43.92
g, 72
45.81
47.156
48,12
49,24
50.13
50.69
52.41
54.15
55.96
57.06
58.70
59.82
61.11
62.30
63.20
64,20
65.019
£5.90
£6.76
67.98
€7.61
h8.77
69,50
69.47
70.12
70,27
70.27
T70.27
70.27
T70.27
70.27
0,27
70.27
73.27
TJO.2
T0.27
10.27
70.27
70,27
70.27

0.0
Tu.27



T

CONSTANT PrESSYL E

C.112
Y (IN)
0.000
0.096
0.008
2.019
2.012
.04
0.019
0,024
0.029
0.034
0.039
0.044
C.C51
0.0hY4
0.074
3.084
0.094
0.104
0.124
0.144
0.164
0.184
0.204
0.224
0. 244
0.264
0.234
0.304
0.324
0.344
0.304
0.384
J.404
0.454
U. 504
0.554
0.600
0.654
0.704
0.754
0.804
0.854
0.904
. 954
1.004
1.104
1.204
1. 304
1.404
1.604
1.6
1. 704

Y(IR) =
THETH (1Y)
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ABLY

PLOW

52.50

2

0.085%

ALONG CONVEY WALL

PINY =
UPW(FT/S20)

H(HL/57C)
26.838
29.61
32.96
35.67
38.52
40.1%u
43,38
45,139
46.77
48.19
49,24
50.26
52.17
53.85
55.22
56.49
57.73
58.63
60.113
61.52
62.23
62.85
63.45
£4.05
64,50
64,80
65.26
65.74
bo.05
66,47
66.84
n7.17
67.049
68,34
659,11
H9.80
70.40
T71.15
71.70
72.05
72.13
72.13
71.973
T1.67
T1.40
70.7%
TJ0. 14
69,595
8,95
68,3
6T h7
67.03

Yo, Ty
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REST AN

DET S (L)

Y

s

CONSTANT DEESSUF

LR

Y (LW)
0.004
J.i0n
N.003
Yoir 1o
D.012
T.0h4
.019
.00y
0,029
0.034
0.039
J.044
0.050
D. 06y
0.C7u
0.084
0.094
0.104
0.124
0.144
0.1604
0.134
0.204
0,224
0.244
0.2h4
0.284
0.304
0.324
0. 344
0.364
0. 384
J 404
0.454
0.504
0.554
0.~04
0,454
0.704
0.754
Nn.304
0.304
J.904
J. 954
1.G0u
1. 1\\'4
. 204
L334
R TRA NI
RLSTAR?S
1,604
1.704

1
1
1
1

X (T =
T (1)
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je o RLSNG CONVE X U ALL

()

crny -
Dive (47 /5 10)

B 7/51C)
204
30,002
33. %49
15,30
I, Ny
19,13
41,04
43,01
ay, 1
NS, o4
4ho74
u47.73
49, u9
51.14
52.14
53.52
S54.75
55.91
57.104
59.43
60,69
61,54
62.47
63.03
63.6%
v, 29
64.85
65,35
05,81
66.15
b6.6Y5
6099
67.61
68,56
69, 36
70.24
T71.09
71.55
72.1%
72,401
T2.504%
72.50
72.37
72.15
T1.413
T1..03
T0.51
9,87
093, 33
GH 0
(R,
T, 0



TABLY 1}
CONSTANT P ESSULE FLOUS ALONG COFVIX dALL

STATION 6 E(IN) = 5G.5 . S {LN) =
DLLS (I = 0.125 TRYTA(TN) = N.0%7 UDW(F7/5EC)
Y (IN) U(rI/SEC)
0,06 22,48
U. 005 25. 46
0.00H 28.670
0.019 31.94
0.612 4. 64
0.014 716.50
0.019 39,01
0.024 41.53
0.029 42,97
0.034 4y .05
0.0139 45.19
0.084 45,92
0.05u 47.5%
0.064 48.92
0.074 50,22
0.084 51.56
0.094 52.74
0.104 53.81
0.124 55.90
0.144 57.77
0.164 59.02
0.184 60.45
0.204 61.41
0.224 62.30
0.244 63.11
0.264 63.74
0.284 64.39
0.304 64,304
0.324 65.39
0.304 £5.92
0. 364 66.33
0. 384 f6.85
0.404 67.21
0.u454 68.19
0.504 69.11
0.554 69.8U
0.604 70.47
0.654 71.137
0.704 71.91
0.754 72.24
0.804 72.46
0.854 72.55%
0.90u 72,44
0.954 72.19
1.0004 71.93
1.10u 71. 34
1.204 70.74
1. 304 70.13
1.404 69.50
1.500 68.139
1.604 68.27
1.704 67.67
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TABLE b

CONSTANT PrESSYEZ FLUW ALONG CONYEX WALL

X(ITH)y = 59,00 E(IN) = 11,520

. 130 TRETA(IN) = 0.093 UPH(F1/SEC) = 7H.34
Y (TN) U (FT/SFEC)
0.00u 21.84
0.006 4 23.05
0.008 27.93
0.010 32.09
0.012 35.15
3014 36.83
0.019 39.uN
0.c2u 40.139
0.029 41.82
0.034 H2.74
0.039 43.31
0.044 44,21
0.054 45,638
0.064 47.27
0.074 48.43
0.084 49.65
0.09u 50.84
0.104 51.77
0.124 53.99
0.144 55.62
0.164 57.61
0.184 58.70
0.204 §0.16
0.224 61.45
0.244 62.21
0.264 62.97
0.284 63.74
0.304 64.22
0.324 64.83
0.344 65. 31
0.364 65.88
0.384 66.25
0.u0Y 66.77
0.U54 67.67
0.504 68.63
0.554 69.48
0.600 70.28
0.654 71.00
0.704 71.63
0.754 72.10
0.804 72.37
0.854 72.41
0.904 72.23
0.954 71.99
1.004 71.72
1.104 71.15
1.204 70.53
1.304 69.93
1.400 69.35
1.504 08.76
1.604 68.16
1.704 67.57
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TABLE 6
CONSTANT DPRFSSHEY FLUA ALONG CONVEX WALL

STATION 8 X(IN) = 63,00 E(IN) = 11.8u9
DELS(IN) = 0.133 THFTA(TN) =  0.094 UPW(FT/SEC) = 78.66
Y (IN) U(FT/SEC)
0.004 18. 31
0.006 20.05
0.0C8 23.50
0.010 27.51
0.012 30.48
0.014 32.82
0.019 36.27
0.024 38.78
0.029 39.82
0.034 40.91
0.039 42.29
0.064 42.93
0.054 4y, u7
0.064 U5.66
0.074 46.85
0.084 48.02
0.094 49.32
0.104 50.16
0.124 51.86
0.144 54.33
0.164 56.13
0.184 57.64
0.204 59.15
0.224 60.40
0.244 62.17
0.264 63.09
0.284 64.23
0.304 65.03
0.324 65.53
0.344 66.09
0.364 66.57
0.334 67.20
0.4004 67.64
0.454 68.50
0.504 69.60
0.554 70.19
0.604 : 71.08
0.654 71.83
0.70u 72.41
0.754 72.77
0.804 72.86
0.854 72.78
0.904 72.61
0.954 72.36
1.004 72.08
1. 104 71.52
1.200 70.97
1.304 70.41
1,404 69.83
1. 594 69.28
1.604 68.69
1,704 68.11
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TABLE 7
CONSTANT PRESSURKE FLOW ALONG COUNVEX WALL

STATTON X(INY = 6£7.00 REINY = 12,820
DELS(IN) = N.146 THETA(TH) = 0.100 UPH(FT/SEC) = Ta.74
Y (IN) U(FT/SEC)
0.004 25.15
0.006 25,80
0.008 27.890
0.010 30.17
0.012 32.13
0.014 33,54
0.019 35.86
N.024 37.39
0.029 38.79
0.034 39.71
0.039 40.46
0.044 41,49
0.054 42.53
0.064 43.80
0.074 44,53
0.084 45,58
0.094 B6.66
0.104 47.80
0.124 49.44
0. 144 51.27
0.164 52.97
0.184 54,53
0,204 56.42
0.224 57.86
0.244 59.36
n.264 60.73
0.284 61.93
0.304 63.23
0.324 64,12
0.344 65.02
0.364 66.00
0.334 66.45
0.404 67.10
0.45u4 68.u7
0.504 69.63
0.554 70.48
0.604 71.29
0.654 71.85
0.704 72.36
0.754 72.83
0.804 73.03
0.854 73.10
0.904 72.98
0.954 72.77
1.00u 72.52
1.104 72.02
1.204 71.53
1.304 71.04
1.404 70.55
1.504 70.¢5
1.60u 69,53
1.704 68.99
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TABLE 8
CONSTANT ['FESSURE FLOW ALONG CONVEX WALL

STATION 11 X(LNy = T71.08 B(TN) = 12.820
NDELS (LN) =  0.155 THRTA(IN) = 0.105 UPW (FT/SEC) = 78.93
Y (TN) U (FT/SEC)
0.004 22,81
0,006 264,47
0.008 26.50
0.010 30.32
0.012 32.23
0.014 33.30
0.019 35.33
0.024 37.01
0.029 38.07
0.034 39.23
0.039 80,04
0.0UY 40.00
0.054 42.04
0.064 42.98
0.074 43.93
0.084 4l .91
0.694 45. 84
0.10U 46.89
0.124 48.56
0.4y 50.13
0.164 51.84
0.184 53,01
0.204 54.73
0.224 56.17
0.244 57.45
0.264 59.18
0.284 60.11
0.30U4 61.39
0.324 62.66
0.344 63.61
0. 364 6U.66
0. 384 65.60
0.400 66.33
0.454 68.00
0.504 69.31
0.554 70.23
0.604 71.02
0.654 71.86
0.704 72.47
0.754 72.82
0.804 73.13
0.854 73.20
0.90CU 73.12
0.954 72.95
1.004 72.74
1.104 72.22
1.204 71.72
1.304 71.22
1.404 70.73
1.500 70.21
1.604 £9.69
1.704 69.15
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STATION 1
Y (1)

0.70
7.60
0.50
d.40
0.35
0.30
0.25
.20
J.15
0.13
0.11
0.09
0.07
0.06
0.06
0.05
0.04
0.03
0.02

TAELE

CONSTANT PRESSUKE FLOW

Ukk2

0.176

0.256

0.893

4,978

R.278
11.396
14.743
17.117
19.664
20.520
21.443
21.917
23.085
23.466
23.4606
23.926
24.293
25.527
27.932

X(1IN)
Va2

0.051
0.145
0.913
2,388
3.113
4.586
6.243
8.408
9.890
9.613
10.156
3.651
8.512
10.602

= 24,00
W2

0.026
0.08v
3.526
2.755
5.065
6.813
8.5868
10.028
11.007
11.447
11.979
11.620
12.649
12.320
12.320
12.488
12.752
13.105
13.151

234

9

ALONG CONVEX WALL

uv

-0.001
-0.024
-0.379
-1.902
~3.026
-4.183
-5.492
-6.626
-B8.035
-7.923
-7.842
-8.057
-7.781
-8.210

R (IN)
Uw

0.00u
-0.006
-0.005
0.108
0.155
C. 247
0.328
0.107
0.235
0.195
0.447
0.452
0.218
C. 384
0.384
0.305
0.511
0.023
0.051

" s e
DCQ

« s o
LoD
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STATTON 7
Y (TN)

1.59
1.30
1.10
0.90
0.70
0.60
0.50
0.u40
0.35
0.30
0.25
0.20
0.15
0.13
N.11
0.09
0.07
0.06
0.06
0.05
.04
0.03
0.02

CONSTANT

Uxx2

C.138
0.151
C.184
0.326
1.867
3.575
4,309
4.9818
5.495
6.051
7.309
9.795
11.967
12.967
14,001
14.532
14.977
15.200
15.200
15.513
15.479
16.089
16.533

TABLE

PRESSURE FLOW

X {TN)
Va2

6H.018
0.020
0.127
0.655
2.079
2.281
1.912
1.913
2.015
2.486
4.916
4.293
7.66U
7.435
3.662
9.469
9.015
8.120

235

59,00
Wik

0.05%
0.063
N.093
0.294
1.213
2.175
3.211
3.855
4,106
4.625
4.993
6.2uu
7.389
8.250
8.336
8.534
8.759
8.784
8.784
8.6u42
8.614
9.021
8.653

10

ALONG CONVEX WALL

oy

-0.002
-0.004
-0.006
-0.012
~-0.210
-0.395
-0.490
-0.538
0,721
-0.935
-1.444
-2.u58
-3.781
-4.166
-4.519
-4.884
-4.999
-5.053

¥ (TN)
uw

¢.003
-0.007
-¢.013
-0.014
-0.005
0.072
6.189
0.224
{.315
0.329
0.470
0.670
¢.593
0.673
0.u37
0.520
0.322
0. 345
0.3u5
0.295
0.371
0.325
0.252

11.520

<l
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STATION 9
Y (1)

1.50
1.30
1.10
J.90
0.70
.60
0.50
J.49
0.35
0.30
0.25
0.20
9.15
0.13
0.11
0.09
0.07
0.06
0.06
0.05
0.04
0.03
0.02

TABLE

11

CONSTANT PRESSUKE FLOW ALONG CONVEX WALL

[ ET

0.4.28
0.388
0.400
0.536
1.994
2.973
3.512
4.013
4..737
6.081
8.646
10,827
13.563
14,514
15.564
16.109
16.506
16,520
16.520
16.868
17.063
17.696
18.699

X (IN)
Vx 2

0.016
0.043
0.200
0.888
1.708
1.816
1.952
3.196
5.047
6.516
9.081
8.723
10.292
9.408
10.424
9.404
8.441
7.357

= 6£7.00
W2

0.364
0.3067
0.333
0.415
1.254
1.608
2.124
2.631
3.153
4.037
6.024
7.505
9.388
9.955
10,2480
10.203
10.179
10,442
10.442
10,417
10.445
16.379
10.167

236

v

0.059
0.064
0.051
-0.002
0.027
0.200
0.340
-0.230
-0.867
-1.846
-3.242
~4,197
-4.526
-4.641
-4.857
~-4.697
-4.950
-5.843

R (IN)
Uw

-0.136
0,001
-0.016
0.027
0.095%
0.209
0.245
0.285
C.274
0.131
-0.122
-0, 125
-0.24y4
-0. 180
-0.212
-0.122
0.105
0.09y
0.094
0.007
0.009
0.011
0.063

12.120

Vi
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STATION 11
Y (IN)

1.50
1.30
1.10
0.90
9.70
0.60
0.5¢0
0.40
0.35
0.30
0.25
0.20
¢.15
0.13
0.11
0.09
0.07
0.06
0.06
0.05
0.04
0.03
0.02

TABLE

12

CONSTANT PRESSURE FLOW ALONG CONVFX WALL

Us*2

¢.876
6.733
¢.710
0.820
2.098
2.632
2.900
3.207
3.676
4,681
6.497
9.927
12.951
13.903
15.193
15.515
15.915
16.086
16.086
16.174
16.337
16.743
17.635

X (1IN}
VakQ

1.911
1.620
1.361
1.117
1.539
1.775
1.920
2.604
2.757
5.028
6.950
8.916
9.478
10.100
9.762
9.956
16.581
8.uuy

237

71.00
Wex2

1.121
0.857
0.681
0.761
1.424
1.746
2.100
2.363
2.758
3.097
4.157
5.606
8.078
8.505
9.329
9.565
9.098
9.433
9,433
9.607
9.696
3.263
9.603

uv

0.426
0.400
0.401
0.182
0.115
0.242
0.209
-0.313
-0.854
-1.9417
-3.097
-4.328
-5.383
-5.478
-5.870
-5.817
-5.741
-5.518

F{IN)
Uw

-0.015
0.046
0.072

-0.023
0.052
0.133
0.134
0.055

-0.182

-0.323

-0.451

-0.446

-0.488

-0.699

-0.382

-0.500

-0.298

-0.332

-0.332

-0.200

-0.006

-0.215
C.169

12.820

VA
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TABLE 13
SEPARATING FLOW ALONG CONVEYX WALL

STATION 1 X(IN)y = 24,00 R(IN) = 0.n
DELS (IN) =  0.095 THETA(TIN) =  0.063 UPW(FT/SEC) = 70.9%
Y (IN) U (FT/SEC)
0.004 21.91
0.006 25. 64
0.008 29,57
0.010 32.47
0.012 34,71
0.014 36.13
0.019 38. 99
0.024 40.39
0.029 41.82
0.034 42.93
0.039 43,75
0.04y 44.73
0.054 45,82
0.064 47.12
0.074 48.15
0.084 48.96
0.094 49.69
0.104 50.50
0.124 51.82
0.144 53.28
0.164 S54.43
0.184 56.11
0.20u 57. 31
0.224 58.96
0.244 59.79
0.264 60.95
0.284 62.18
0.304 63.26
0.324 64,31
0.344 64.98
N,364 65.68
0. 334 66. 36
0.404 66.97
0.u45y 68.14
0.504 69.01
0.554 69.63
0.604 70.0G5
0.654 70.49
0.704 70.75
0.754 70.88
0.804 70.95
0.854 70.95
0.90u 70.95
0.954 70.95
1.004 70.95
1. 104 70.95
1.204 70.95
1. 304 70.95
1.404 70.95
1.504 70.95
1.604 70.95
1.704 70.95
1.804 70.95
1.904 70.95
2.004 70.95
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TAULE 14
SEPAMATING FLOW ALONG CONVEX WALL

STATION 2 X(IN) = 52.50 E(IN) = 10.5°0
NELS(IN) = 0.118 THETA(IN) =  0.087 UPW(FT/SEC) = 77.33
Y (I%) U (ET/SFC)
0.004 25.17
0.006 27.52
0.008 30.71
0.010 33.30
0.012 35.33
0.014 36.91
0.019 40.72
0.024 42.21
0.029 42.92
0.034 44,42
0.039 45.13
0.0u4 45.86
0.054 57.33
0.064 49,24
0.074 50.42
0.084 51.62
0.094 53.26
0.104 54,31
0.124 56.30
0.144 57.86
0.164 59,07
0.184 60.11
0.204 60.94
0.224 61.72
0.244 £2.18
0.264 62.79
0.284 63.25
0.304 63.81
0.324 64,22
0.3u44 64.704
0.364 65.25
0. 1384 65.71
0.404 66.18
0.454 67.20
0.504 68.00
0.550 68.99
0.604 69.73
0.654 70.32
0.704 70.75
0.754 70.99
0.800 71.14
0.854 71.07
0.904 70.91
0.954 70.63
1.004 70. 30
1.174 £9.68
1.204 59.02
1.304 68.37
1.404 67.73
1.504 67.09
1.604 66 .16
1.704 65. Rl
1.804 65.22
1.904 64 .61
2.004 64.00
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TABLE 15
SEFPARATING FLOW ALONG CONVEX WALL

STATION 4 ¥ (IN) = 54,50 W(IN) =  10.890
DELS(IN) = 0.153 THETA(IN) =  0.105 UPW(FT/SEC) = T4.61
Y (TH) U (FT/SFC)
0.004 20.95
0.006 22.33
0.008 23.37
0.010 24.77
0.012 26.98
0.014 28.55%
0.019 31.82
0.024 33.49
0.029 34.93
0.034 35.98
0.039 37.09
0.04u 37.98
0.054 39,13
0.064 40.74
0.074 41.9
0.084 43.18
0.094 44.29
0.104 45.50
0.124 u7.57
0.144 49.80
0.164 51.44
0.184 53.07
0.20u 4,59
0.224 55.73
0.244 56.68
0.264 57.48
0.284 58.17
0.304 58.85
0.324 59.49
0.344 60.01
0.364 60.51
0. 384 61.06
0.404 £1.55
0.454 62.74
0.504 63.75
0.554 64.70
0.604 65.59
0.654 6£6.U6
0.704 67.12
0.754 67.71
0.804 68.14
0.854 68.33
0.904 68.39
0.954 n8.27
1.004 68.04
1.104 67.42
1.204 66,89
1. 304 66.19
1.404 65.58
1. 504 64,99
1.604 64.39
1.704 $3.80
1.804 63.22
1.904 62. 64
2,004 62.07
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TABLE 16
SEPARATLING FLOW ALONG CONVREX WALL

STATION 6 X(IN) = 56.5D PINY = 11,200
DELS (IN) = 0.197 THETA(TH) = o127 ULW (FT/SEC) = 72.32
Y (1) U(FT/SEC)
0.02%4 18.¢0
0,076 20.85
0.008 21.490
.010 23.06
0.012 20.26
0.0174 25.3b
0.019 26.73
0.024 28. 138
0.029 29.36
0.034 29.69
0.039 30.47
0.040 31.07
0.054 32.24
0.064 33.41
0.07u 34,82
0.084 35.066
0.094 36.59
0.104 317.62
0.124 3G9.94
0.144 41,43
0.164 43.19
0.184 45,69
0.204 be. 68
0.224 48,53
0.244 49,69
0.264 51.07
0.284 52.09
0.304 53.08
0.324 54,14
0.344 54.73
0. 364 55.57
0.384 56.09
0.404 56.70
0.454 58.08
0.504 59.26
0.554 £0.34
0.604 61.28
0.654 62.28
0.704 63.17
0.754 63.98
0.80u 64,73
0.854 65.35
0.904 65.67
0.954 65.85
1.004 65. 91
1. 104 5,53
1.204 64.94
1.304 64,37
T.404 63.79
1.504 H3.23
1.0604 62.67
1.7¢4 62.11
1.804 61.56
1.904 61.01
2.004 60.47
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TABLE 17
SEPARATING FLOW ALONG CONVPX WALL

STATION 7 X(IN) = 59,00 P{IN) = 11,529
DELS(IN) = 0.270 THETA (TN} = 0,162 UprW (FT/SEC) = 6&8.76
Y(IN) U(tr/SEC)
0.004 16.01
0.006 17.30
0.608 17.54
0.010 18.78
0.012 19.51
0.014 20.40
0.019 21.13
0.024 21.90
0.029 22.42
0.034 22.93
0.039 23.69
0.0uy 23.91
0.054 24,86
0.0064 25.53
D.074 26.18
0.084 26.95
0.094 27.13
0.104 27.97
0.124 29.62
0.144 31.96
0.164 32.78
0.184 33.92
0.204 36.05
0.224 37.15
0.244 38.99
0.264 40,22
0.284 u1.60
0.304 43.02
0.324 ug .14
0. 344 45.40
0.364 46.39
0.384 u7.48
0.404 48.05
0.454 $0.13
0.504 51.47
0.554 53.09
0.604 54,31
0.654 55.28
0.704 56.49
0.754 57.35
0.804 58.29
0.854 59,33
0.904 60.14
0.954 60.87
1.004 61.52
1. 104 F1.89
1.204 61.90
1.304 61.40
1.404 t0.87
1.504 60.34
1.604 59.82
1.704 59.30
1.804 58.79
1.904 58.28
2.004 57.78
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TARLE 193
SEPARATING FLOW ALONG CONVEYX WALL

STATION 9 X (IN) = 62.50 R(IN) = 11,4840
DELS(IN) = 0,301 THITA(TN) = 0,212 UPW (FT/SEC) = 65,58
Y (IN) U (FT/SEC)
0.004 15.33
0.006 15,28
0.008% 15.71
0.019 16.13
0.012 16.61
0.014 16. 85
0.019 17.96
0.024 18.81
0.029 18.97
0.034 19.46
0.039 19.136
0.04Y4 19.71
0.054 20.15
0.064 20.28
0.074 20.82
0.084 20.95
0.094 21.42
0.104 21.71
0.124 22.56
0.144 23.38
0.164 24.32
0.184 25.53
0.204 26.16
0.224 27.51
0.244u 28.548
0.264 29.24
0.284 30.69
0.304 32.01
0. 324 33.24
0.344 34.31
0.364 35.60
0.384 36.74
0.404 37.52
0.454 40.23
0.504 42.72
0.554 44,52
0.604 46.16
0.654 47.30
0.704 48.54
0.75u 49.58
0.804 50.53
0.854 51.31
0.904 52.20
0.954 52.99
1.004 53.85
1.104 55.59
1. 204 57.07
1.304 58.00
1.404 57.99
1.5004 57.76
1.604 57.27
1.704 56.79
1.804 56.32
1.904 55.84
2.004 55.37
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TALLE 19
SEPARATING FLOW ALONG CONVEYX WALL

STATION 11 X (IN) = 66.0u F(IN) = 12.8z0
DELS (1IN) = 0.u485% THETA(IN) = 0.232 UPW(FT/SEC) = 62.925
Y (TN) U(FT/SFC)
0.00u 11.139
0.004 11. 34
0.008 11.28
0.010 11.23
0.012 11.17
0.014 11.12
0.019 10.938
0.024 11.93
0.029 12.01
0.03u 12.59
0.039 13. 34
0.044 13.86
0.054 14,00
0.064 14.65
0.074 14.44
0.084 14.66
0.094 15.04
0.104 15.25
0.124 15.84
0.144 16.37
0.164 17.48
0.18u4 18.40
0.204 19.52
0.224 20. 2.
0.244 21.20
0.264 22.30
0.284 23.24
0.304 24,35
0.324 25.26
0.34y 26.38
0.364 27.78
0.384 28.97
0.404 29.83
0.u454 32.044
0.504 35,39
0.554 37.82
0.604 39.89
0.654 $41.89
0.704 43,52
0.754 45,00
0.804 45,88
0.854 47.08
0.904 47.93
0.954 48.88
1.004 49.50
1. 104 51.13
1.204 52.53
1. 304 54.01
1,404 55.08
1.504 55.69
1.604 55,54
1.704 55.31
1.804 54.68
1.904 54.26
2.004 53.84
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TABLE 29
SEPARATING FLOW ALONG CONVEIX WALL

STATION 12 X(IN) = 59.50 R(IN) = 12.370
DELS(IK) =  0.603 THETA(IN) = 0.279 UPH(FT/SEC) = A1.39
Y (IN) U (¥T /S FC)
0.004 13.04
0.006 12.99
0.008 12.95
0.010 12,90
0.012 12.83
0.014 12.91
0.019 12.70
0.024 12.58
0.029 12.66
0.034 13.03
0.039 13.10
0.044 13.18
0.054 13.0%
0.064 13.93
0.074 13.72
0.084 13.51
0.094 13.75
0.104 14.07
0.124 14.53
0.144 14.48
0.164 14.51
0.184 14.96
0.204 15,31
0.224 15.58
0.2u44 16.24
0.264 16.86
0.284 17.19
0.304 17.71
0.324 18.63
0.344 19.05
0.364 19.91
0.384 20.85
0.404 21. 34
0.454 23.33
0.504 25. 64
0.554 27.95
0.604 30.32
0.654 33.17
0.704 35.58
0.754 37.69
0.804 39.40
0.854 41.07
0.90U 42.59
0.954 43.90
1.004 45.08
1.104 46.77
1.204 48,25
1.304 49,53
1.404 50.85%
1.504 51.93
1.604 52.65
1.704 53.29
1.804 53.22
1.904 52,92
2.004 52.51
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TABLE 21

SEPANATING FLOW ALONG COHVEX 4WALL

STATTON 1 X(IN) = 20,00 W(INY = 0.0

Y (IN) Uskx?2 Vaen2 LET Y uv U Vi
31.00 0. 146 0.657 0.006 -0.010 -0.001 0.019
1.00 N.158 0.057 9.006 -¢.010 -0.001 0.019
.90 0.173 0.080 0.0290 -0,031 0.0 0.023
0.80 0.214 0.097 0.069 -0.051 C.003 0.024
2.70 0.408 0.286 0.189 -0.102 0.006 ~0.00u
D.60 1.591 1.094 1.067 -0.536 0.020 -0.115
0.55 3.294 1.643 1.829 -1.236 0.034 ~-0.277
D.50 5.559 2.883 2.694 ~-2.052 0.113 -0.19¢
0.45 7.743 3.361 4.619 -2.878 0.10¢0 -0.254
0.40 9.800 4,411 6.456 -3.750 0.045 -0.222
0.35 13.524 5.400 7.712 -4.649 0.08% -0.371
0.30 15.5406 6.608 9,443 -5.559 -0.063 -0.409
0.25 17.270 7.102 10.091 -6.516 -0.091 -0.476
0.20 18.47¢0 8.608 10.667 -7.223 -0.070 -0.496
0.15 21.140 9.102 11.097 -8.116 ~-0.046 -0.326
0.10 23.3086 9,192 12.176 -8.245 -C.074 ~-0.23%
V.05 24,760 8.902 12.206 -8.135 -0. 139 -0.191
0.05 24,760 12.206 -0.,139

0.04 25.414 12.859 0.029

0.03 28,137 13.503 ~-0,030

0.02 28.788 14.523 -0.081

246



STATION

4

Y (IN)

1.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

40
20
(NN
a0
80
70
60
50
49
30
20
15
10
05
05
02

TABLF

22

SEPARATING FLOW ALONG CONVEX WALL

Ux%2

0.159
0.250
Cauid
2.026
3.011
4,019
4,954
5.460
5.899
6.132
6.945
8.450
12.718
14,740
14,740
12.602

X (IN)
VR

-0.384
-0.212
D.2423
1.159
1.574
2.180
2.793
3.295
2.741
2.841
2.558
3.232
2.622
5.136

247

S4.50
Wh%2

0.064
0.191
N.701
1.604
1.859
2.656
3.254
3.651
3.943
4.067
4,754
5.750
7.542
3.608
9.608
5.734

uv

0.249
0.193
Y lbh
0,318
J.413
0.355
0.161
-0.234
-0.035
-0.187
-0.5u44
-1.307
-2.113
-3.933

R(TN)
UW

C.007
0.029
ety
0.671
0.505
0.772
0.583
0.532
G. 480
0.446
C.239
-0.,127
-0.335
-0.778
-0.778
-0.265

10.8490

Vi

0.019
0.045
O.unl
0.391
1.194
1.000
1.393
1.132
1.0482
1.035
0.9G7
1.420
0.948
1.205



TABLE 23

SEPARATING FLOW ALONG CONVEX WALL

STATION 9 X{(IN) = 62.50 R(IN) = 11,840
Y (IN) Ure2 VREQ Wh*2 uv Uw VN
2.00 0.350  -0.347 0.188 0.414 0,006 C.1884
1.80 0.358 -0.172 0.243 0.427 0.007 0.172
1.60 0.381 -0.283 9.156 ¢.352 0.009 0.163
1. 40 0.532 0.0€5 0.2590 0.401 C.019 0.283
1.20 1.221 0.394 0.813 0.146  -0.139 0.549
1.00 2.402 1.101 1.643 -0.086 -0.275 0.u456
0.90 2.830 0.797 1.955 -0.082  =0.huu 0.290
0.80 3.250 0.713 2.152 -0.073  -0.5u48 0.196
0.70 3.653 0.992 2.372  -0.273  -0.608 0.086
0.60 4,351 1.213 2.863  -0.442  -0.616 0.005
0.50 6.795 1.262 4.220 -0.709  -0.b25 0.189
J.40 11,144 2.660 7.169  -2.142 -0, 483 0.706
0.30 14,963 3.885 9.820 -3.366 -0.408 1.100
0.20 15.452 4.560 9.944  -4.672 -0.257 1.781
0.10  12.169 4,325 7.226 -3,187  -0.186 0.549
0.05 9.967 3.011 6.137 -2.295 -0.060 0.452
0.05 9.967 6.137 -0.060
0.02 9. 166 5,105 -0.102
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TAULE 24

SEPARATING FLOW ALONG CONVEX WAL

STATION 11 X (IN) = 66,00 F(IN)}y = 12.820
Y (IN) U2 Va2 Whkw?l gv W VW
2.00 1.207 -0.302 0.565 0.625 -0.025 0.501
1.80 1.137 -0.272 0.u45¢ 0.878 ~0.029 0.383
1.60 1.044 -0.541 0.331 1.012 0.003 0.227
1. 40 1.468 -0.557 0.634 1.399 0.002 0.270
1.20 2.569 0.909 1.388 0.651 -0.286 0.482
1.00 3.317 1.097 1.934 0.191 -d.618 0.341
0.90 3.526 1.203 2.165 0.045 -0.70¢ 0.471
0.80 3.942 0.979 2.570 ~-0.079 -0.745 0.417
0.70 5.196 1.787 3.u80 -0.648 -0.623 0.631
0.60 7.905 1.828 5.018 -0.902 ~0.345 0.967
0.50 11.354 2.793 7.103 -1.874 -0.063 1.196
0.40 14.703 4.580 9,557 -3.325 0.022 1.702
0.30 15.509 5.090 10. 366 -3.874 -0.057 1.66U
J3.20 14.560 4.263 8.41¢C -3.356 0.026 1.040
0.10 10.682 3.460 6.967 -2.503 0.150 0.999
0.05 8.857 2.561 5.543 -1.727 0.187 0.262
0.05 8.857 5.543 0. 187
0,02 7.778 4,280 0.165
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STATION 12
Y (TH)

2.00
1.80
1.690
1.40
1.20
1.00
0.90
0.80
0.70
0.60
0.50
0.40
J.30
0.20
0.1¢
0.10
0.05
0.02

SEPARATING

U¥x2

4.113
3.603
3.103
3.499
3.907
4.495
5.858
8.502
11,985
15.402
17.019
17.899
16.634
14,530
10.651
10.651
9.295
5.511

X (1IN)
V#x2

1.236
1.489
1.450
0.664
1.925
2.405
2.38Y
2.153
3.142
2.710
5.309
3.601
2.981
3.286
4.211

TABLE

25

FLOW ALONG CONVEX WALL

1
1
1

250

69.50
W2

1.892
1.244
1.169
1.522
2.132
2.991
4,045
5.826
7.322
9.762
1.581
1.068
1.354
8.707
6.083
6.083
5.005
2.411

uv

2.325
1.993
1.530
1.881
0.557
-0.299
-1.859
-1.176
-2.208
-2.816
-4.,279
-3.190
-3.215
-2.726
-2.973

P(IN)
uw

=0, 1u7
0.023
-0, 082
-0.345
-C.691
-0.685
~0.584
-0.411
-, 153
-0.493
-G.507
-0.921
-1.2540
-0.925
~-0,623
-0.623
-0.511
-0.287

12,820
\L

1.839
1.428
0.98¢
0.774
0.732
0.613
0.74y
0.560
0.88%5
2.177
2.08¢0
2.218
2.786
2.603
1.311



TABLE 25
CONSTANT PRESSUKs FLO4 ALONG CONCAVE WALL

STATION 1 X(IN) = 204,00 BP{IN) = 0.n
DELS (1N} = 0.087 THYTA(IH) = N.062 NPW(FT/SECY = T0.¢3
Y (IN) U(FT/S¥ECQ)
0.006 25.50
J.N0UR 29.09
0.010 32.77
0.015 36.9n
0.020 39.15
0.025 u0.64
0.030 41,34
6.035 42.83
0.0u40 13.93
0.050 45, 33
0.000 6,52
0.070 47.82
0.080 ug8,91
0.090 50.01
0.100 50.H0
0.120 52.20
0.140 53.89
0.160 55. 39
0.180 57.18
0.200 58. 18
0.220 59.77
0.240 61.06
0.260 62.06
0,280 63.U6
0. 300 L4.05
0.320 65,05
0. 340 65.75
0.360 bbb, 64
0.380 67.14
0.400 67.64
0.450 68.54
0.500Q 69.23
0.55V 69.713
0.600 70.13
0.650 70.23
0.700 70.33
0.7590 70.53
0.800 70.63
0.850 70.63
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TAULE 2/
CONSTANT PLFSSUEF FLO& ALONS COMCAVE «ALL

STATION 2 X(IK) = 70.00 FCIN) = =17.830
DZLS (IN) = 0.299 THFTA(IN) = N.235 UPA(FT/SEC) = 61.20
Y (IN) U (1 /SFC)
0.603 33.19
0.010 34.53
0.G15 36.68
0.020 38.11
0.025 39.93
0.030 39.85
0.035 40,47
0.0u) 10,98
0.060 42.41
£.080 43,20
0.100 43.99
0.130 4,468
0.160 Ly, a8
0.190 45,49
0.220 46. 00
0.250 46.51
0.280 46.32
0.310 47.23
0.340 47.54
0.370 47.95
0.400 48,136
0.u450 48.77
0.500 49.48
0.5%50 50,10
0.600 50.40
C.650 51.02
0.700 51.43
0.750 2.4
0.800 52.45
0.8590 52.86
0.900 53.48
J.950 a4, 04
1.000 54.50
1.100 55, G4
1. 200 57.17
1.300 18,91
1.400 0,34
1.500 61.83
1.6400 3. 41
1.700 64,51
1.800 65.¢7
1.920 66,69
2.000 67. 11
2.500 70.09
3.000 72.133
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TABLE 28
CONSTANT [RESSIRE FLOW ALONG CONCAVE WALL

STATION 3 X(IN) = 70.00 v{IN) = —-17.330
DELS(IN) =  0.200 THETA (IN) = 0,153 UPW (PT/SEC) = 61,20
Y (IN) U (FT/S EC)
0.00% 31.18
0.610 32,70
0.015 35.52
0.020 37.4u
0.025 18.45
0.030 39.2%
0.035 39.76
0.040 40.37
0.060 41.78
C.080 42.89
0.100 43.60
0.130 4, 41
0.160 4y .91
0.190 45,52
0.220 46.02
0.250 46,42
0.280 47.03
0.310 N7.43
0.340 47.84
0.370 48, 24
0.400 48.35
0.450 49,55
0.500 50.66
0.550 51.64
0.600 52.68
0.650 53,99
0.700 55.10
0.750 56..21
0.300 57.43
0.850 58.43
0.900 59,24
0.959 60,45
1.000 61.46
1.100 63.28
1.200 “4.59
1.300 65.50
1. 400 66.00
1.500 66.31
1.600 66.71
1.700 67.01
1.800 A7.32
1.960 67.72
2.000 68,32
2.507 70.55
3.000 72.97
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TABLE 29
CONSTANT PRE3SSTKES FLOW ALONG CONCAVE WALL

STATION U X(IMY =  96.00 K (IN) = =21.8790
DELS(IN) = 0.250 THETA(TIN) = 0,227 UPW (F1/SEC) = f1.60
Y (IN) U (FT/sEC)
0.006 37.69
0.008 39.44
0.010 Bo.74
0.015 43.17
0.020 4y,13
0.025 45, 38
0.0390 bo.2?
0.035 47,04
0.040 47.59
0.060 49.69
0.080 51.17
0.100 52.22
0.150 54.33
0.220 55.27
0.250 55.90
0. 300 56.54
0.350 56.F5
0.400 57.38
0.500 57. 91
0.600 58.42
0.700 58.75
0.800 59.17
0.900 56,80
1.000 60. 11
1.200 61.17
1.400 62.22
1.600 63.17
1.800 63.80
2.000 64,33
2.200 ol4,85
2.400 64. 85
2.600 65.17
2.800 65.59
3.000 66,483
3.200 67.17
3.400 68,0
3.600 70.12
3.800 71.70
4.0n0 73.34%
4.200 74,455
4,400 75.70
4.6)0 76.75
4.800 77.38
5.000 78.71
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TApLE 30
CONSTANT PLESSURE FLOW ALONG CONCAV: WALL

STATION 5 X(IN) = 96 .G E{IN) = -21.87¢
DELS {IN)y = 0.129 TUHETA (IN) = 0.113 UPW(FT/SEC) = f1.60
Y (IN) U(FT/SEC)
0.006 31.26
0.00% 35.17
C.010 37.94
0.015 41.85
0.u20 43.91
C.025 45,24
0.030 46, 33
0.035 47.09
0.040 47.81
0.060 50.28
0.030 51.93
0.100 52.96
0.150 54.70
0.200 55.83
0. 250 56.35
0.300 56.86
0.350 57.17
0.400 57.48
0.500 57.99
0.600 58.40
0.700 58.82
0.800 59.23
0.900 59.74
1.000 60. 35
1.190 60.98
1. 200 61.80
1. 320 2,62
1.400 63,34
1.500 6u,16
1.600 64.78
1.700 65.50
1.800 €6.22
1.9u0 66.73
2.000 67.25
2.200 68.24
2.400 69.10
2.600 69,92
2.1300 70.54
3.000 71.16
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STAT1ION 1
Y (IN)

3.00
1.00
0.90
0.80
0.70
.69
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.05
0.04
0.03
0.02

TAGLE

CONSTANT PRESSURE FLOW

Uxx2

0.129
0.13u
0.143
0.160
0.286
1.840
3.406
6.139
8.670
11.278
14,142
16.071
17.841
19.697
22.263
24.178
25.615
25,615
26.440
29.0u8
30.7613

X (IN)
VE*2

0.057
0.057
0.063
0.119
0.u55%
1.188
2.445
3.348
4.462
5.318
6.259
7.110
8.274
8.919
9.773
9.132
9.339

= 26.00
Wik 2

0.007
0.007
0.008
0.034
0.3006
1.274
2.058
3.281
5.340
7.102
8.894
9.9290
10.290
11.368
11.623
12,920
12.900
12.900
13.135
13.892
14.816
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i

ALONG CONCAVE WALL

uv

-.0n8
-0.008
-0.024
-0.039
-0.093
-9.716
-1.461
-2.343
-3.306
-4,159
-4,929
~-5.743
-6.694
-7.410
-B8.073
-8.246
-8. 341

R(IN) =
UwW

0.209
0.201
0.001
0.002
0.014
c.024
0.0u49
¢.10%
0.123
0.128
0.116
o.o021
0.166
0.170
0.101
0.068
0.049
0.0u49
0.103
0.115
0.003

0.¢
VN

-0.0M
-0.0061
-0.,002
-0.004
-0.022
~0.0n0¢
~-0.093
-0.175
-0.205%
-0.383
-0.u32
-0.395
-0.276
-0.469
-0.u4132
-0.502
-0.582



TABLE 32

CONSTANT PRESSURE FLOW ALONG CONCAVF WALL

STATION 2 X(IN) = 70.03 R(IN) = -17.830
Y (IN) Uk Vxk) R uv Uw Vi
2.59 0.265 0.274 0.171  ~0.007 ".012 -0.115
2.30 0.428 0.633 C.428  -0.123 0.064  -0.133
2.10 1.023 1.256 1,189  -n.,247 C.279  -0.152
1.90 2.729 2.855 3.109  -0.979 0.881 -0.523
1.80 4.507 4,117 4.30¢ -1.818 1.607  —1.3u0
1.70  10.465 7.393 9.803  -4,2u41 3.805 -2.1363
1.60 12.165 4,966 7.945 -3.117 4,036  -1.882
1.50 15.225% 10.543 11.865 -6.99% 5.688  -2.427
1.40 19,158 8.721 13.893 —6.440 £.845  -2.743
1.30 23.977 11.927 16.053 -8.810 .312 -3.835
1.20 26.083 16. 2379 18.762 -11.u497 9.615 4,943
1.10  28.707 19.113 20,287 -12.791 10.330 -5.818
1.00  31.184 17.436 23.252 -11.414 11.335 -5.220
0.90  31.951 21,482 24.280 -14.246  11.762 -6.212
J0.80 32,199 20,588  25.043 -13.577 11.361 —6.0u0
0.70 31.592  20.573  25.258 =-12.980 10.069  ~4.070
0.60  31.202 19.287  23.820 -12.538 8.897  -3.188
0.50  30.065 19.652  23.688 -13.062 7.678  -4.034
0.40  28.769 16.533  21.046 -11.204 5.587 ~3.269
0.30 27.672 16.946  20.323 -10.866 3.714 =1.1u8
0.20 26,840 14,287 17.3%2 -9.170 2.803  ~1.605
0.15  26.070 14,054 17.045 -8.561 2.587 ~=2.100
0.10  26.757 11.789 16,431 -7.190 2,600  -2.952
0.05 28.105 8.112 16,755  -5,260 2.497  -2,923
0.05  28.105 16.755 2.497
0.04  28.609 17.198 2.389
0.03  28.967 17.434 1.728
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TABLE 33

CONSTANT PRESSURE FLOW ALONG CONCAVF WALL

STATION 3 X(IN) = 70.00 R(IN) = —-17.830
Y (IN) U**2 Va2 Wax2 uv uw Ve
1.60 0.305 0.354 0.238  -0.041 €.0G1 0.050
1.50 0.466 0.6u49 0.452 -0.159 0.006 0.031
1.40 0.929 0.977 0.938  =-0.369  -0.00R 0.015
1.30 2.799 2.6U46 1.704 -1.579  -0.092 0.140
1.20 5.662 5.391 2.930 -3.740  -0.37¢€ 0.585
1.10 11,722 7.308 6.091 -6.212 -0.406 0.408
1.00 16.7¢69 8.896 10.578 -7.936  -1.216 0.459
0.90 23.398  11.293 12.566 -10.232  -1.182 0.423
0.80  27.340 15.746 16.376 -=13.797  -1.621 0.960
0.70 29.905 15.233  18.B86 -13.877  -1.548 G.13%
0.60  30.405 15.230  19.516 -13.477  -2.494 1.651
.50 29.865 18.552  20.790 -14.716  -2.106 v.205
0.40 28.639 17.947 19.940 =-13.869  -2.637 1.009
0.30  25.624 17.318  20.202 -11.828 =-2.177 0.085
0.20 25.337 15.047 18.767 -9.610  -3.352 1.679
0.15 24,552 13.944  19.534  -8.951  -3.425 0.597
0.10  25.957 12.342 19,071 -7.839  -3.604  -0.286
0.05 27.037 12.032 22.593 -7.017 -3.620 -0.250
0.05 27.037 22.593 -3.620
0.04 28,165 19.969 -3.757
0.03 28.711 20.146 -3.400
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TABLE 34

CONSTANT [RESGULE FLOW ALONG CONSCAVE WALL

STATION U X(IX) = 96,00 E(TN) = =21.570
{ (IR) U* %2 Vs 2 Wk 2 nv fiy VH
4,65 2.530 3,402 3.550 -1.165 SL3000 —1.713
4,45 3.7060 5.250 4,659 -1.939 (.ob¢ -2.343
4,25 5.550 7.656 6.050 -3.149 1.27¢0 -3.415
4.05 B.600 11.419 B8.250 -5.390 2.190 -4, 3494
3.a85 13.130 15. 324 10.530 -4.387 2 RTG -6.013
3.05 16,650 16.656 12.100 -9.587 3.079 =544,
3.45 18,33 17.139 13.250 -9,655 2.850 -5.12¢
3.25 19,070 15.454 14,630 -T7.4936 2.3006 ~3.800
3,05 19,100 17.336 16,260 -7.644 1.0706 -2.742
2.85 18,320 19.719 18,370 -7.690 t.200 -0.773
2.65 16.870 20.65a6 20.709 -6.504 (. 400 -1.247
2.45 16.000 21.573 22.659 -6.049 1.0690 -0.633
2,20 15.214 20,458 21.952 -5.461 2. 329 -1.939
2.00 14,493 21.283 21.624 -7.362 2.675 -2.0397
1.80 14,847 21.885 22.328 -9.5611 3,219 -3.442
1.60 15.611 17.818 22.609 -2.5%09 3.367 -4.515
1.40 16.076 19.98A 22.880 -10.158 3.557 =5.1235%
1.20 16.162 12.973 231.3G17 -10.993 3.317 -4,9302
1.00 15.853 19,010 23,663 -11.027 3.086 -4.2373
0,80 15,9538 183.9006 20,485 =10.7717 3,404 -4,202
0.60  16.545 15,874 24,583 -9,765 U, 169  =-u,77u
J.40 19.124 13.810 21.845 -8.,895 h.932 -3.97;2
0.20 25,427 9.1%5 20.899 -7.552 5. 80¢ -3.712
0.10 29,209 7. 386 19.581 -6.496 L,973 -2.8¢3
0.05 30,481 7.798 19.059 -7.130 4,280 -4.10u
J3.05 30.481 19,059 L, 280
J.04 29.747 19.903 u,3un
0.03 29,977 13,251 4,322
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TABLE 35

CONSTANT PRESSURE FLOW ALONG CONCAVLE WALL

STATION & X(IN) = 96.00 [(IN) = =21.8070
Y (TH) U**2 VEED WD uv uw Vi
3,00 2.113 3.525 4.795  =-1.195 “Lu18 0 =0, 287
2.80 2.405 3.524 5.117 -1.144 0.350 0.190
2.60 2.567 4.091 5.985 -1.437 0.195 0.512
2.40 1,176 4.59u 6.094  -1.629 0.215 0.63#
2.20 4.27% 6.593 6.846  -2.927 ¢.135 0.779
2.00 5.696 7.581 7.701 -3.709  -0.074 0.941
1.80 8.852 9.756 8.850  =5.572  -(.5b¢ 1.269
1.60  11.180 12.720 10.948  =7.960  -0.623 1.241
1.40 13.699 14,683 12.510 =9.442  -0.467 0.7u2
1.20 15.007 15. 249 14.629  -9.904  -0,275 0.462
1.00 15.777 16.130 15.549 -10.268 0.033  -0.159
0.80 15.939 17.774 16.125% =-10.619 0.093 -0.31H
0.60 15.871 15.940  16.896  -B.924  ~-C.354  -C.091
0.40 16.536 12.503 17.885 -7.145 -0,93¢ -0.243
0.30  18.417 140Uk 19.109  -8.366  -1,955 1.141
0.20 21.998 13.590  20.270 -8.578 -1.989 0.362
0.15 24,501 9.445  22.179  -7.045 -2.881 0.826
0.10  26.907 12.731 21.805 -9.511 -2.313 -0.965
0.05 28.437 5.068 23.729 -5.634 -1.845% ~-1.584
0.05  28.437 23.729 -1.845
0.04 28,769 23.128 -1.658
0.03 28,963 23.100 ~-1.679
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